Developing Conceptual and Procedural Knowledge/Skills of Lifelong Learners from Basic to Advance Learning: Exemplars, Challenges and Future Direction

Khar Thoe Ng1*, Junainah Jamaludin2, Yee Jiea Pang1, Careemah Choong4, Yoon Fah Lay3, Eng Tek Ong6, Kamalambal Durairaj5, Corrienna Abdul Talib9, Chee Keong Chin9

1, 7 Training and Research Division, SEAMEO RECSAM, Penang, MALAYSIA
2 Planning Sector, District Education Office, Sandakan, Sabah, MALAYSIA
3 Institute of Technology Management and Entrepreneurship, Universiti Teknikal Malaysia, Melaka, MALAYSIA
4 School of Graduate Studies, Asia E University, Subang Jaya, Selangor, MALAYSIA
5 Faculty of Psychology and Education, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, MALAYSIA
6 Faculty of Social Sciences and Liberal Arts, UCSI University, Kuala Lumpur, MALAYSIA
7 Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia, Johor, MALAYSIA
8 Teacher Education Institute Malaysia Tuanku Bainun Campus, Bukit Mertajam, MALAYSIA

ABSTRACT
Developing conceptual and procedural knowledge or skills of learners is ‘part and parcel’ of the roles of educators involved in teaching science and social science subjects. This article aims to espouse numerous educational reforms implemented locally, regionally, and internationally during the past decades, with exemplars and challenges elaborated. The mixed-method approach is selected as a research framework that includes the collection of qualitative data (mainly from documentary analysis, interviews, observation, and open-ended responses) and quantitative data (mainly from survey questionnaires). This article reports mainly qualitative findings that are summarised from mixed-modes of analysis on data collected through systematic review and ‘multiple-case design’, including ‘cross-case and within-case analysis’ on how conceptual and procedural knowledge and skills of learners could be enhanced through the implementation of various technology-integrated project-based programmes incorporating various effective strategies anchored on hybrid approaches in replacement of traditional methods. Case exemplars are illustrated with how these programmes serve as platforms for basic education and foundation courses from basic to advanced learning among lifelong learners. The analysis of a local programme to promote Year 4 students’ (N = 33) primary science learning using the 5E constructivist model revealed that students were mentally engaged in learning science concepts, interacting with new experiences, and able to correct misconceptions with enhanced conceptual and procedural knowledge and skills on the taught topics ‘Scientific Skills, Life Processes of Humans, and Properties of Materials’ as reflected in their increased mean scores of science achievement analysed statistically. The implementation of the ‘Learning Science and Mathematics Together’ (LeSMaT) student-centered regional learning programme that provided a guide for expected project output is also illustrated with an exemplar of how learners’ conceptual and procedural knowledge and skills in ‘environmental education’ were enhanced through the preparation of the project required for this program. The analysis of social science learning involving building foundation knowledge in economics through an international research-based internship programme revealed that students’ conceptual and procedural knowledge and skills in ‘economics’ were enhanced with the input on research methodology and the need to produce a report, which tied in with theories and the experience of their placements in various business settings that provided real-life experience related to economic issues faced during the pandemic. In the end, the significance and implications of the study are discussed with ideas for how to move forward.

Keywords: basic education, conceptual or declarative knowledge, foundation courses, mixed-research multiple case analysis, procedural knowledge or skills, science/social science studies

© 2022 by the authors; license PGSD UMP. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
✉ lesmatemail@gmail.com (*Correspondence)
INTRODUCTION

Background and Overview
Teaching science and social science subjects with the development of conceptual and procedural knowledge or skills among learners is ‘part and parcel’ of the role of educators. Learners need to build adequate basic knowledge before they can proceed with learning concepts related to their aspired fields of studies, e.g., engineering or health education for students in science streams, and economics or accountancy for those who want to pursue careers related to arts streams. However, questions were always raised as to whether the conceptual or procedural approach should be given more priority or emphasis. Also, which of these approaches should come first to groom a better learner? Some are not highly educated or uneducated people with good procedural skills who can carry out daily activities like cooking, operating a machine, or even inventing something new as a technopreneur. Could they be better equipped with conceptual knowledge (i.e., understanding what they are doing or the scientific principles behind these actions) and able to disseminate their findings?

Numerous efforts have been made over the past few decades to support quality basic education and foundation courses that are offered to provide platforms for the advancement of science and social science studies using various approaches, from policy implementation to practise in educational settings. For example, priority area No. 7 of the SEAMEO’s Education Agenda, which reflects "leading through learning," was established to promote radical reform through systematic analysis of the knowledge, skills, and values required to respond effectively to changing global contexts [1].

This article aims at espousing the various reforms made over the past decades with a showcase of exemplars, elaboration on challenges, and suggestions for the way forward for project-based programmes and modular approaches aimed at developing the conceptual and procedural knowledge and skills of lifelong learners, from basic to advanced learning.

Review of Related Literature

Conceptual and Procedural Knowledge/ Skills Required in Basic Education Anchored on Constructivist Framework
‘Conceptual knowledge’ is the ‘understanding of ‘why we are doing an action’ or the ‘understanding of the concepts in order to solve certain problems’. In a more elaborative manner, ‘conceptual knowledge’ (or sometimes being referred to as ‘declarative knowledge’) refers to the understanding or knowledge of aspects such as classification of living/non-living things, concepts, laws, models, principles, and theories. This type of knowledge is acquired through experience, listening, observation, reading and deliberate or reflective mental activities. However, according to [2], a conceptual approach could be highly structural based, and require minimal equipment for hands-on activities that are designed to let students use their own logical reasoning and be engaged in learning mathematics conceptually without knowing the procedures to be followed.

On the contrary, ‘procedural knowledge’ is operationally defined as ‘knowing what to do’ and involves the ‘working out of any procedure that can be used to solve certain
proceeds’ regardless of whether the problem solver may or may not understand the reasoning behind a procedure. As an example, according to A to Z teacher Stuff, was that many students were found to have not mastered the conceptual understanding ‘fractions’ with long-term memory, but they could solve the problem related to ‘fraction’ as they memorised a procedure just for the sake of an exam or test [3].

A conceptual approach is referred to as something more directed, explicit, and prescriptive. Whereas the constructivist approach promotes ‘learning through self-initiated, practical exploration, such as the Montessori method, which that is based on the principle of constructivism, i.e., a description of the process by which we have the task of learning anything of real importance, i.e., something we have an actual need for, a self-directed/self-paced learning-by-doing path is initiated to master that skill. To name a few, learning to master the art of gardening, painting a portrait, and learning to sew [2]. In fact, there are many types of constructivism, or active learning, like experiential learning, discovery learning, and knowledge development, to name a few.

Over the years, there have been various models developed anchored on the constructivist model, and 5E is one of the constructivist models developed by Bybbee in 1997, involving 5 phases, i.e. ‘Engagement, Exploration, Explanation, Elaboration, and Evaluation’. Each phase has specific functions that contribute to the teacher’s coherent instruction and better students’ conceptual understanding of scientific and technological knowledge [4] [5]. To wrap up the achievement of the lesson objectives, the teacher can observe the engagement and students understanding through continuous observation during the lesson. The 5E constructivist model is widely used because it proves that people build knowledge and meaning from experience. In the educational context, the 5E model gives students the opportunity to engage in learning with peers while exploring their own knowledge either through doing projects, experiments, inventions, etc. [6]. Minimal supervision from a teacher gives freedom to students to create, express themselves and use their optimal “energy” to explore and elaborate. Furthermore, it also increases their understanding of concepts or facts that will be used in life. In acquiring self-knowledge, students also need to make a refinement of newly learned knowledge, i.e., combine it with previous knowledge in reforming a solid understanding of concepts or facts, especially in science. In addition, this 5E model can unearth students’ talents in communicating to convey opinions or findings so that they can be shared with classmates, as a result, making learning alive and conducive environments.

Basic Education as a Foundation for Lifelong Learning in a Sustainable Future.

According to Article 1.4 of UNESCO, basic education is defined as the development of attitudes, values, knowledge, and competencies [7] as the foundation for lifelong learning & human development, upon which any country may systematically build further levels of numerous types of education and training [8].

A *foundation course* is normally taken at tertiary institutions such as centres, colleges, & universities, as a year-long introductory programme. The course/programme can be in the form of either a wide range of subjects or only as per subject at a basic level that aims at preparing students for a more advanced level of study [9] in a new environment. Students also learn how to get the right level of qualifications, skills, knowledge, and confidence to go to college or university for three years, for example, with extra help in English as a basic requirement of the course and to reach their full potential in their studies. Literature also
reveals that foundation years are crucial to assist international learners to adapt themselves to the academic and lifestyles of other dissimilar countries. An extra year on the foundation course is an excellent way for late bloomers or developers to advance to a higher level of study [10][11].

Problem Statement and Rationale

Education is an essential requirement, along with other basic needs, to have a good quality of life for anyone, anywhere. In developing countries, especially in the South Asia region, basic education is pivotal to eradicating poverty, minimizing inequity and steering economic development [10]. However, there have been ongoing debates about the suitable types and effective strategies to implement basic education with minimum disparities and inequalities among the global population, especially in countries scattered in the far-flung areas of each continent, such as the SEAMEO region. Mathematics has long been considered one of the important topics introduced in basic education for lifelong learners and foundation courses for school-going students to pursue an advanced level of studies, whether in science or arts-based subjects such as health education, engineering, accountancy, and economics, to name a few.

Nevertheless, there have been long-running arguments about whether teaching mathematics in a conceptual way is superior to teaching this subject using the procedural method. Such arguments have caused mathematics educators to be divided into two opposite sides in the US, particularly, i.e. the proceduralists and the conceptualists. The debates from each side have tended to be contradictory. For example, there was the argument of traditionalists who claimed that progressionists only cared if students comprehended concepts but were uninterested if they could actually solve math problems [2].

In addition, there were also arguments that many of the professional learning programmes which recommended the shift towards a conceptual approach seldom gave their participants adequate and self-explanatory guidelines or a clear roadmap to implement a conceptual approach. There were suggestions that mathematical understanding among students could be fostered through the use of activities and strategies that could allow students to participate in hands-on/minds-on activities early in the unit before the introduction of procedures, preferably through a hybrid approach that includes both conceptual and procedural approaches with 9 keys recommended. A hybrid approach includes the essential prerequisites from both approaches, i.e. the ‘students are enabled to understand what it is they are working on in the class (quality conceptual approach) and the explicit teaching of procedures (quality procedural approach). This hybrid approach is mainly student-centred with a highly-structured, conceptually-based approach and incorporates the explicit teaching of procedures, preferably implemented using a department/system-wide or team-based approach [2].

One factor of teacher failure in the classroom is the inadequacy of the teaching approach, which makes students feel bored, drowsy and tired [1]. In addition, an effective teaching and learning approach should be able to challenge student abilities as well as develop the creative and critical minds of students through planned and innovative teaching approaches such as active and student-centred learning approaches such as project-based
activities or the 5E modular approach with tracking/monitoring, and sharing of exemplars. The 5E constructivist model is an example of a hybrid approach as it consists of authentic student engagement that enhances conceptual and procedural knowledge and skills, and lets them immerse in activities with a thorough understanding of what they are working on with ownership of learning [2]. These approaches could possibly enhance both conceptual and procedural knowledge/skills of lifelong learners with a better foundation in a core subject such as mathematics.

Aim and Research Question

This paper aims to examine if the implementation of values-driven project-based programmes could possibly replace the traditional approach to provide a platform for a hybrid approach to developing the conceptual and procedural knowledge and skills of lifelong learners from basic to advanced learning. The evolution of these types of programmes that were implemented in the past decades is analysed, including numerous approaches/strategies that were implemented, incorporating conceptual and procedural knowledge and skills into foundation courses.

The following are the research questions as a guide for this study:

1) How could the implementation of project-based programmes enhance the conceptual and procedural knowledge/skills of lifelong learners?
2) What are the strategies/approaches, and challenges faced to develop the conceptual and procedural knowledge and skills of learners sustainably from basic to advanced levels of education?
3) Are there exemplars of values-based programmes implemented locally/regionally/internationally that could illustrate the integration of conceptual and procedural knowledge and skills for lifelong learners?

MATERIAL AND METHODS

This paper examines how conceptual and procedural knowledge/skills of learners could be enhanced through the implementation of various technology-integrated project-based programmes that serve as a platform for foundation studies with various effective strategies anchored on hybrid approaches in replacement of traditional approaches. A mixed-method or multimethod approach [12] was selected as the research framework of this study. These include the collection of qualitative data (mainly from documentary analysis, interviews, observation, and open-ended responses) and quantitative data (mainly from survey questionnaires). The presentation of findings is mainly based on a mixed-mode of analysis on data collected through systematic review [2] and ‘multiple-case design’ [13] to overcome the issue of generalizability based on a single case study and also to corroborate the evidence that enhances the validity of the study [14].

The selection of literature or articles (that are relevant to the Research Questions) through systematic review on various databases involving synthesis and evaluation of all accessible evidence was first conducted, with findings summarized in tables. Numerous studies published in peer-reviewed e-journals and e-books/databases between 2010 to 2021 were explored through search engines such as Google Scholar, the International Journal of Computer Applications (IJCA), Research Gate and Scopus, to name a few. The keywords or topics explored included ‘project-based programmes, foundation studies,
transdisciplinary approach, STEM, STEAM, computational thinking, robotics, to name a few.

In this study, there are two main types of multiple-case analysis [15] i.e. Cross Case Analysis’ (CCA) that looked for common patterns between using the characteristics/elements of programmes that enhance conceptual/procedural knowledge/skills and integration mechanisms of strategies/approaches in foundation studies; as well as ‘Within-Case Analysis’ (WCA) that looked separately at each specific case of how values-based programmes implemented locally/regionally/internationally could integrate conceptual and procedural knowledge/skills enhancement for lifelong learners.

Hence, the aforementioned research methods are concurred with the five purposes of mixed-method research reported by [16], i.e., (1) complementarity to clarify the result of a single method; (2) development as it helped one method to shape another; (3) expansion that provided a richness of study through a multimethod approach; (4) initiation with the formulation of new research questions; and (5) triangulation that serves as finding consistency of the study with enhanced breadth and depth.

RESULTS AND DISCUSSION

This section provides discussions of the results with elaboration based on the analysis of the findings.

Implementation of Programmes that Enhance Conceptual and Procedural Knowledge/Skills

Table 1 summarizes the cross-case analysis of project-based programmes implemented from 2010-2015 and 2016-2021 locally (e.g., STEM/STEAM-based modular approaches), regionally (e.g., SSYS, MAAYS), internationally (e.g., LeSMaT and R-CBL) and locally (e.g., Teacher Education Institute).
<table>
<thead>
<tr>
<th>Strategies/approaches and Challenges in Foundation Studies for Sustainable Future of Lifelong Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2 summarizes the cross-case analysis on strategies/approaches and challenges in basic education or foundation studies for the sustainable future of lifelong learners for the project-based programmes implemented at or led by regional centres, community, international schools and universities from 2010 to 2015 and from 2016 to 2021. Among the exemplars were ‘Search for SEAMEO Young Scientists’ (SSYS), ‘Socio-scientific Issues’ (SSI) lesson exemplars following ’Analyze, Design, Develop, Implement, and Evaluate’ (ADDIE) instructional design model, LeSMaT (Borderless) and Robotics Competition-based Learning (R-CBL), to name a few.</td>
</tr>
<tr>
<td>6-Years' period (Institution based)</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Project-based programme (with differentiation of instruction and expected output as a natural by-product of student-centred approach) implemented locally, regionally and internationally</td>
</tr>
<tr>
<td>Challenges faced during implementation</td>
</tr>
<tr>
<td>Conceptual knowledge (including metacognitive, HOT, computational thinking) skills enhancement integrating values</td>
</tr>
<tr>
<td>Procedural knowledge (including research) skills enhancement</td>
</tr>
<tr>
<td>Life (entrepreneurial/survival/work/communication/collaborative) skills enhancement integrating values</td>
</tr>
<tr>
<td>Technology skills enhancement</td>
</tr>
</tbody>
</table>
Exemplars that Illustrate the Integration of Conceptual/Procedural Knowledge/Skills in Foundation Studies

Table 3 summarises the within-case analysis of selected project-based programmes implemented locally, regionally, and internationally over the last five years.

Table 3. Within-Case Analysis on Exemplars from Selected Project-based Programme(s) Implemented Locally, Regionally and Internationally

<table>
<thead>
<tr>
<th>Exemplars</th>
<th>Approaches/Strategies</th>
<th>Skills (values-driven) Integration in Foundation Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transdisciplina ry</td>
<td>System wide</td>
</tr>
<tr>
<td>SSYS forum supporting LeSMaT (Borderless)</td>
<td>Learning output reflecting conceptual/ procedural knowledge/ skills (e.g. investigative project) [25]</td>
<td>Regionally in blended-mode</td>
</tr>
<tr>
<td>From MAAYS in SEARCH for youth researchers to Vision Academy and Life Rhythm</td>
<td>Support of human resource development through e-learning</td>
<td>Regionally in blended-mode</td>
</tr>
<tr>
<td>LeSMaT (Borderless) offshoot programme in LearnT-SMaRtET</td>
<td>Learners' output integrating transdisciplinary studies in LearnT-SMaRtET</td>
<td>Internationally in blended-mode</td>
</tr>
<tr>
<td>support of and TTI SIT online course series [30]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM/STEAM/SI issue-based Modular Approaches</td>
<td>STEM module using 5E constructivist model [32]</td>
<td>Locally in blended-mode</td>
</tr>
<tr>
<td>'Robotics Competition-based Learning' (R-CBL)</td>
<td>R-CBL module anchoring on constructivist model [19].</td>
<td>Internationally in blended-mode</td>
</tr>
</tbody>
</table>
The following Table 4 illustrates an exemplar from the STEM-based Modular Approach to teach primary science in rural areas using the 5E constructivist model.

Table 4. Exemplar from STEM-based Modular Approach to Teach Primary Science in Rural Areas using 5E Constructivist Model

<table>
<thead>
<tr>
<th>No</th>
<th>Phase</th>
<th>Observation findings during tryout of modules related to development of conceptual and procedural knowledge/skills</th>
<th>Sample illustrations</th>
</tr>
</thead>
</table>
| 1 | Engagement | • The teacher was found to have stimulated students to draw their attention, involve them in the learning process and make connections between past and present learning experiences through varied, interesting and meaningful activities;
 • Where the teacher raised questions concerning the pre-defined problem, the students revealed their ideas and beliefs.
 • Where the teacher asked questions about a pre-defined problem, the students shared their ideas and talked about them.
 • Students’ ideas were compared; they were let work individually or in cooperative groups; hence they became mentally engaged in the concept, process, or skill to be learned on a primary science topic. | ![Image](image1.png) |
| 2 | Exploration | • The students were found to interact with new experiences that arouse many questions that may be difficult to answer.
 • The students were discovered to interact with new experiences, which arouse many questions that may be difficult to answer.
 • By doing activities, they try to find an answer to these questions, which will lead them to discover relationships that were not known to them.
 • The teacher was seen to play the role as a guide, facilitator, and advisor. He/she gave encouragement and training to enhance students’ procedural skills to continue activities until the clear image of the scientific concept became apparent. | ![Image](image2.png) |
| 3 | Explanation | • The students were seen to have benefited from the results of the previous two phases, as they could correct their misconception about the concept.
 • The teacher was seen to collect information from students to help them in organizing, summarizing, and processing it mentally until the concepts, operations, and skills became understandable and clear.
 • Then student, at this stage reach the new ideas offered by the teacher and has the ability to re-formulate these ideas in a scientific manner, with the teacher starting to draw and connect the student’s conceptual understanding.
 • Interpretations of these experiences were facilitated by the teacher to make sure that the students were able to interpret the exploratory experiments using scientific terms correctly. | ![Image](image3.png) |
<table>
<thead>
<tr>
<th>No</th>
<th>Phase</th>
<th>Observation findings during tryout of modules related to the development of conceptual and procedural knowledge/skills</th>
<th>Sample illustrations</th>
</tr>
</thead>
</table>
| 4 | Elaboration | • The teacher was seen to challenge and extend students’ conceptual understanding and skills.
• Through new experiences, the students developed a deeper and broader understanding of e.g. the effect of adding some amounts of soda bicarbonate to the increasing of the size of balloons, more information, and adequate skills.
• Students apply their understanding of the concept by conducting additional activities. | ![Sample Illustration](image1.png) |
| 5 | Evaluation | • Students received feedback on the adequacy of their explanations and abilities.
• Informal evaluation occurred from the beginning of the instructional sequence.
• An on-going diagnostic process was seen that allowed the teacher to determine if the learners have attained an understanding of concepts and knowledge.
• Evaluation and assessment occurred at all points along the continuum of the instructional process. Some of the tools that assist in this diagnostic process are:
(a) Rubrics (quantified and prioritized outcome expectations) that were determined hand-in-hand with the lesson design.
(b) Teacher observation was structured by checklists, student interviews, portfolios designed with specific purposes, project/problem-based learning products, and embedded assessments. | ![Sample Illustration](image2.png) |

(Adapted from [14][16][18][20][21]).

CONCLUSION

Significance and Implications

In this study, numerous educational reforms implemented locally, regionally, and internationally during the past decades were espoused with exemplars and challenges elaborated through cross-case and within-case analysis on how the project-based programmes served as blended-mode platforms for basic education and foundation courses from basic to advanced learning among lifelong learners. For example, the SSYS biennially held events that were conducted fully on-site were evolved into the blended-mode approach to cater for wider participation and constraints faced during the pandemic. The experience of organizing the MAAYS programme led by Vision Academy also stimulated further creative ventures to promote ‘life rhythm’. The management of technology-enhanced innovation programmes has also evolved into a hybrid approach [encompassing inquiry-based science education (IBSE), project-based activities (PBA) and problem-based learning (PBL) and robotics competition-based learning (R-CBL)] in which the input from one project-based programme could support the organization of other events as reported by [26].
Another exemplar, the ‘LearnT-SMArET’ online training SEAMEO Education Agenda programme [34] as an offshoot programme of the LeSMaT(Borderless) initiative, was conducted in 2018 (as summarized in Table 1 and with the exemplar reported in Table 3), focusing on different themes and sub-themes sets [related to STEM, STEAM, STREAM and transdisciplinary approaches [25]. This programme was also found to be effective in enhancing students’ conceptual and procedural knowledge/ skills through STEM-related project-based activities requiring students’ submission of technology-enhanced learning output uploaded online. The LeSMaT(Borderless) initiative and other SEAMEO TVET programmes have been in support of local/national [e.g. teacher education institute that promoted STEM-based Environmental Education studies and universities that promoted computational thinking (CT) as well as financial literacy/entrepreneurial skills urgently required the in IR4.0 era] and international (e.g. the programme coordinated by the fourth co-author in her postgraduate studies)]27. The analysis of social science learning involving building foundation knowledge on economics and financial literacy through an international research-based internship programme revealed that students’ conceptual and procedural knowledge/skills on ‘economics and international relations’ were enhanced with the input on research methodology and the need to produce a report which was tied to theories and the experience of their placements in various business settings. All of these provided real-life experience related to economic issues faced during the pandemic, as experienced by the fourth co-author. The building of financial literacy for social science learning, is as important as the development of scientific literacy for science learning and the latter was researched and reported [9].

Constraints and Lessons Learnt with Suggestions for the Way Forward

From a systematic review of the literature and analysis of cases in this study, it is evident that changing from a traditional procedural approach to other an alternative or more hybrid manner could be difficult. The misconceptions held about what the real conceptual approach could be (e.g. requiring more time, extensive use of hands-on materials, insufficient emphasis on the teaching of procedures) must be overcome by all educators before they have a mind set for new approaches [2].

Nevertheless, literature revealed that human beings mature at different rates [34] with some of them are lucky enough to know what they want to since young while many other young people are still grappling to find the niche areas or skills that they could master or excel although they may have a natural ability to focus on whatever task is in front of them as many things are not that straightforward for them to master, to know what they could make the right academic choices or to do when growing up.

Nevertheless, literature revealed that human beings mature at different rates [34], with some lucky enough to know what they want to do since they are young, while many other young people are still struggling to find the niche areas or skills that they could master or excel in, despite having a natural ability to focus on whatever task is in front of them, as many things are not that straightforward for them to master, to know what they could make the right choice in. For example, some of the youth may need a few years of real-life experience before they can begin to understand their own identity and what they plan to do with better conceptual and procedural knowledge/skills. Others may wish to travel in order to gain a better understanding of life without putting additional pressure on their academic performance. The study on the implementation of the 5E constructivist STEM-based Modular approach
to teach primary science in rural areas revealed significant results despite the constraints faced, such as resources and technology support. Hence, this study showed that more efforts could be made to reach out to a wider audience in marginalized groups, as had been reported in the study by [3] to transform public libraries into digital knowledge dissemination centres to support lifelong blended learning programmes for rural youths. Such efforts also prevent dropout in the early years, as researched by Zaitun and Mahmoud before [6].

From the lessons learnt through analyzing exemplary cases in this study, we may explore wider opportunities to prepare basic education programmes and foundation courses that could be implemented in 'block/theme-based' forms possibly through blended-mode as well as open and distance education, as reported by Gil-Jaurena & Malik [38], to consider also gender equality [39] and Sustainable Development Goals (SDGs) [40]. These modes of delivery are especially appropriate in the new normal if they can be integrated with micro-credentials accreditation, as an internship programme with real-life experience in related settings, to ensure that youths feel better prepared for their future so that they can devote more time and energy to their respective fields of study to achieve their aspirations.

REFERENCES

*) The authors wish to acknowledge internal research grants of SEAMEO RECSAM, special fund grant scheme of Universiti Malaysia Sabah for funding various research projects related to developing STEM modular approach in teaching conceptual and procedural knowledge/skills as well as sharing of knowledge and experience by Dr. Kim Phaik Lah, the founder of MAAYS and Life Rhythm Sdn. Bhd., previously known as Vision Academy (M) Sdn. Bhd.

http://jurnalnasional.ump/index.php/dinamika