
JUITA: Jurnal Informatika e-ISSN: 2579-8901; Volume 8, Nomor 2, November 2020

Development of Bot for Microservices … | Deriyanto, S.P., Santoso, H.A., 141 – 147 141

Development of Bot for Microservices Server

Monitoring Using Life Cycle Approach to Network

Design Method

Setyadhi Putra Deriyanto1, Heru Agus Santoso2 *

1,2Department of Informatics, Fakulty of Computer Science, Dian Nuswantoro University, Semarang

*corresponding author: heru.agus.santoso@dsn.dinus.ac.id

Abstract - This study was conducted on the emergency

response system implemented in Demak, Kendal, and

Batang districts, namely Tanggapin. This system provides

services in the form of reporting and actions and

information about the health sector, from the availability

of hospital rooms to the availability of blood at PMI.

Tanggapin uses a mobile-based and web-based platform,

where the web is used as a medium for operators to input

data and validates incoming reports. The complex system

services with various supporting features require a

microservices architecture to operate independently and

distributed. Because of this dynamic system, real-time

monitoring support for the server performance is needed

via Telegram Bot. The monitoring system was built using

the PPDIOO Lifecycle Approach to Network Design and

Implementation method because it is reliable, and the flow

of a process never breaks. The format used to exchange

data uses the JSON (Javascript Object Notation) format.

This study shows that the monitoring system runs well

because every test carried out gives the expected results,

namely, the admin receives a warning message via the

Telegram Bot.

Keywords: Microservices, Server Monitoring, Bot

I. INTRODUCTION

Computing needs will continue to grow, and the

development of services provided by an institution

through information technology. In computer networks,

more efficient techniques have been emerging in its

development to provide services on a wide scale.

Computer networks allow for centralized computing

processes and distributed computing. Nowadays, the

computing needs in service provision are increasing.

This provision impacts the increasing volume of data

traffic simultaneously, the demand for mobile services,

and increasing flexibility. Increasing services through

computer networks must be balanced with the increase

in computing resources to trigger an overload of work on

servers and their supporting devices [1].

Recently, the microservices paradigm that uses

container technology, namely packages to run

applications without virtual machines, is becoming

increasingly popular. Microservices are an architecture

based mostly on separate autonomous services that can

be developed, deployed, and operated independently of

one another [2].

Microservices have several challenges regarding team

organization, development practices, and the

infrastructure used [3]. In this regard, two critical

challenges require support for the management and

monitoring of microservices system servers. The

independent nature of the microservices-based system

and a highly dynamic distributed system urgently need

the support of monitoring services and management of

these services [4]. The first challenge concerns the

relationship between software architecture and software

teams. If the relationship between the software architecture

and the software team is appropriate, it will be seen in the

microservices system architecture. In the microservices

system architecture, software teams can operate

independently of each other. The second is the distributed

nature and details of microservices. Microservices-based

systems can consist of many independently developed and

deployed services, which interact while they are running. Due

to this independent nature, the interaction between the service

and the overall system architecture becomes apparent as it is

running.

This research is applied to an emergency response

system that provides services in reporting and action,

namely Tanggapin. Tanggapin is a mobile-based and

web-based application that can be accessed according to

the user's needs and conditions. Due to the complex

system services with various supporting features, a

microservices architecture is implemented

independently and applied in a distributed manner.

Therefore, keeping for monitoring and service

management is crucial. According to Cinque et al. [5],

Monitoring activities are essential in any software

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Volume 8, Nomor 2, November 2020

142 Development of Bot for Microservices … | Deriyanto, S.P., Santoso, H.A., 141 – 147

system. The increasing use of microservices

architectures will complicate the monitoring process and

create challenges due to the log data source used for the

monitoring process. It is more comfortable for the team

to manage and monitor the microservices system using a

different machine from the microservices server.

Many studies on the use of bots to monitor servers

have been conducted. Studies on the use of Telegram Bot

as a monitoring tool for various applications have been

widely carried out. Telegram Bot is used to integrate

complaints of services available on university websites.

With this application, a student does not need to visit the

university website, just fill in a complaint via Telegram

[6]. Telegram Bot is also used to guide non-expert users

in monitoring radiofrequency links' feasibility, namely

BotRf. BotRf is applied to smartphones and personal

computers for bandwidth-limited environments [7].

On the other hand, Telegram Bot is also used to

facilitate information dissemination on campus. Having

the ability to handle multiple requests simultaneously,

this bot can provide information according to user

requests [8]. Meanwhile, Botanicum is a Telegram Bot

application for classifying trees based on leaf images.

This bot can classify approximately twenty different tree

species in Russia. Interaction user with bots is carried out

using simple conversation and brief instructions on how

to take photos. The resulting classification accuracy

reached 97.8% [9]. In this study, Telegram Bot is used as

a notification sender to the user's telegram application

when a microservices system experiences problems. The

bot also provides easy access to time and place as a

medium connected to the mobile microservices system

via a smartphone device. Using the Telegram Bot in this

study is a medium to provide easy access and notification

from the microservice system. The use of Telegram Bot

service requires its device to run smoothly. For this

reason, the server is used as a place for installing

Telegram Bot to make it more efficient. Because the

server is a separate device from the microservices

system, the use of Telegram Bot will not burden the

processes, memory, and services of other devices.

II. METHOD

This study uses the PPDIOO Lifecycle Approach to

Network Design and Implementation method [10]. This

method is widely used in the development and

management of a computer network. PPDIO is

implemented in six phases as an uninterrupted process

flow. In this method phase, there is no beginning and end

of the development of a computer network, which is

described in six stages as follows:

1) Preparation: The preparation stage in our study

involves the current requirements for computer network

development strategies. It is also the technology

preparation that is most suitable for the existing

architecture. One of them is the use of Docker to perform

testing as it can isolate all processes into a specific

server.

2) Planning: Our study's planning stage involves

identifying network requirements based on user needs,

objectives, facilities, and other planning aspects.

Specifically, our study assesses the existing network's

characteristics and conducts a gap analysis of whether

the existing infrastructure can support the proposed

system's development. This part of the planning stage is

also useful so that the network monitoring development

process is aligned with the parameters of resource

requirements.

3) Design: Our study's design stage involves the

design and specification aspects of the network as a

comprehensive and detailed design to meet the current

engineering aspects. Our study aims to provide a design

system that improves the availability, scalability,

performance, and reliability of network services to be

provided in the design stage. The availability and

scalability improvement will be carried out by adding

more components to a complete system design. On the

other hand, the performance and reliability improvement

will be implemented by design specifications that have

been carefully compiled use as the basis for

implementing computer network development.

4) Implementation: The implementation stage in

our study produces a computer network with a reliable

monitoring system or the addition of new components

that are integrated with the existing network

infrastructure based on design specifications and

objectives. The main principle is to maintain the stability

of the current network without creating new

vulnerabilities.

5) Operation: The operational stage is considered

as the final test of the conformity of network

development with the design. In our study, this phase

involves maintaining the network through day-to-day

operations. Deviation detection, corrections, and

performance monitoring are carried out to provide data

for the optimization phase.

6) Optimization: It involves proactive and

responsive network management. In our study, a

proactive and responsive management strategy is used to

identify and resolve previous problems that affect the

organization and users' needs. Proactive and responsive

error detection and correction are required for optimal

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Volume 8, Nomor 2, November 2020

Development of Bot for Microservices … | Deriyanto, S.P., Santoso, H.A., 141 – 147 143

network performance. In-network development with the

PPDIOO method, the optimization phase can require

network re-planning if performance does not meet the

goals and expectations.

The PPDIOO method requires that all stages be

carried out in a structured and sequential manner, as

illustrated in Fig. 1.

To implement this method, this research requires

hardware and software support as follows::

1) Hardware

a. Server Intel® Xeon® E5-2650 v2 @ 2.6 GHz,

DDR4 16 GB.

b. Local network devices and the internet.

Network devices with high speed are essential

to maintain the quality and stability of

communication between servers.

c. Smartphones are used as the messenger

application's installation device, which

receives notification messages sent via the

Telegram Bot.

2) Software

a. Ubuntu Operating System 18.04 LTS is used

as the operating system installed on all servers.

b. Docker is used as the primary tool installed on

all computer servers.

c. Prometheus is software that functions to

collect metrics from targets that running on

docker and server.

d. Nodeexporter is Prometheus client libraries

that are installed on Docker, and also installed

on each computer server.

e. Alertmanager can handle alert messages sent

from Prometheus and routed to recipients.

f. Telegram Messenger is a messenger

application installed on the user's Smartphone,

which is used as a device for receiving

warning messages.

Fig. 1 PPDIOO development method

III. RESULT AND DISCUSSION

Tanggapin is an integrated emergency response

system implemented in three districts in Central Java,

namely Kabupaten Batang, Kabupaten Kendal, and

Kabupaten Demak. Regarding this study, which is

conducted on Tanggapin using the method explained

above, the implementation of the method is described as

follows:

1) The preparation and planning stage identifies the

requirements that apply to Tanggapin. It is used to

provide Tanggapin with computer network development

strategy and propose the most appropriate technology for

the current architecture. The use of Docker is to perform

testing as it can isolate all processes into a specific

server.

(2) Design stage. The design stage involves the

design aspects and network specifications as a

comprehensive design to meet the engineering aspects

Tanggapin. The system uses a computer server that

functions as a monitoring server as well as a place to

install Docker and Telegram Bot running in Docker. This

design process is focused on analyzing hardware

requirements, analyzing software and operating system

requirements, as well as network architecture and

topology. The network topology used in the monitoring

system is depicted in Fig. 2. The computer server that

functions as a monitoring server is used to record all

activity and data traffic on the Docker network and also

to monitor the microservices system [11]. Meanwhile,

the Telegram on computer server functions as an API

service provider that will be used in the development—

the client functions as a recipient of notification

messages sent from the Telegram Bot.

Fig. 2 Star network topology used in this study

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Volume 8, Nomor 2, November 2020

144 Development of Bot for Microservices … | Deriyanto, S.P., Santoso, H.A., 141 – 147

(3) Implementation Phase. As explained above

about the software requirements, the use of Docker,

which is to help to make the testing of the system easier.

Because it can isolate all processes that are running on

one computer server [12]. Hence, the test will run

optimally. In a sequential manner, the software

installation on the server starts from the installation of (a)

the Ubuntu Server 18.04 LTS operating system, (b) the

monitoring server configuration, to communicate with

each other between the monitoring server and the

microservices server, (c) Installing the Docker engine,

(d) Docker compose installation, (e) installation and

configuration of Traefik used to balance microservices

server workloads, (f) Prometheus installation and

configuration, (g) Alertmanager installation and

configuration, (h) Nodeexporter installation and

configuration, (i) Prometheus integration and

Alertmanager, (j) Integration of Nodeexporter and

Prometheus, (k) Integration of Traffic and Prometheus,

(l) up-down monitoring of server computers, (m) up-

down monitoring of microservice services, (n) grouping

of computer server metrics data and (o) monitoring the

server status.

In accordance with the design that has been provided,

then testing of Nodeexporter is carried out so that it can

collect metrics data from the computer server and then

send it to Prometheus, which will later be processed and

executed by Prometheus. Fig. 3 depicts the alert rule

monitoring server. It is used to test the warning rule

configuration on the Alertmanager to determine if a

service has a problem or is down. Testing on the

Telegram Bot API is carried out, but with the condition

that only certain Telegram accounts can receive

notification messages via the Telegram messenger

application. After simulating and getting the desired

results, the system will be ready to be implemented.

(4) Operational Phase. The operational phase is

considered the final test of the network development's

suitability to the design [13]. A script using the extension

".rules" is created to perform up/down monitoring of the

computer. It is created using the command ~ $ touch

alert-server.rule, and the file is used to determine alert

conditions based on metrics data collected by

Prometheus and using Prometheus expressions. The

Server Microservices monitoring architecture with

Telegram Bot was developed on Tanggapin, depicted in

Fig. 4.

Fig. 3 Script alert rule monitoring server

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Volume 8, Nomor 2, November 2020

Development of Bot for Microservices … | Deriyanto, S.P., Santoso, H.A., 141 – 147 145

Fig. 4 The architecture of monitoring system

In Fig. 4, the computer server is used to run

supporting software such as docker, and in Docker there

are several supporting services and tools running.

Computers servers are connected to the internet and

functioning as internet network providers and network

management for Docker. On the Smartphone, the

Telegram messenger application will be installed, which

is used to connect with the Telegram Bot installed on

Docker.

(5) Optimation Phase. The optimization phase is

carried out after considering that the condition through

the information obtained from monitoring has been built

both on the hardware and software sides. Based on the

operational phase that has been carried out, it is assessed

whether the system is running well according to the

design that has been made or not. Optimization is done

after checking to ensure whether the system is running

according to the configuratoin setting that has been set or

not. Management and maintenance are carried out so that

the network system runs according to quality standards

and services.

In this study, testing was carried out using several

types of problem conditions in one of the microservices

system's services.

A. Testing of the monitoring system

Testing the monitoring system is carried out to

determine whether the monitoring system is running as

expected or not; hence, testing is carried out several

times. From the tests that have been carried out

repeatedly, it can be concluded that the warning message

down on one of the service containers from the

microservice system can be received via the Telegram

Bot three times at different times. Table I below

describes the monitoring system testing scenario.

Based on Table I, server monitoring testing is carried

out with six server conditions, where each condition is

conducted using a different test method. In each test

method, the test was performed three times with the

results shown in Fig. 5. The results explained that the

average time of notification appearance after six types of

testing is 2,4 minutes.

TABLE I

THE TESTING SCENARIO OF THE MONITORING SYSTEM

No Testing aspects Ways of testing

I Down of computer server Shut down the computer server and turn it back on. Done in several

tests.

II CPU overload of the

computer server

Simulate the use of CPU on the computer server using“stress-ng”

tools. It is carried out for several tests.

III Memory overload of the

computer server

Simulates memory usage on the computer server using the

"memtester" tool. It was done several tests.

IV Microservices system

down

Turn down one of the responsive microservices system services and

turn it back on

V CPU overload of

Microservices system

Simulates CPU usage on one of the responsive microservices

system services using the "stress-ng" tool. It was done in several

tests.

VI Memory overload of

Microservices System

Simulates memory usage on one of the responsive microservices

system services using the "memtester" tool. It was done in several

tests.

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Volume 8, Nomor 2, November 2020

146 Development of Bot for Microservices … | Deriyanto, S.P., Santoso, H.A., 141 – 147

Fig. 5 Testing of monitoring system

 B. Telegram Bot testing

A bot is a computer program that handles tasks in an

automated manner [14]. To provide a better bot

performance, bot testing is crucial [15]. The test is

carried out to determine whether the Telegram Bot

responds to commands entered and runs as expected. The

Telegram Bot test scenario is described in Table II. The

scenario of bot testing is carried out with three testing

conditions.
The result of the testing scenario based on three commands,

i.e., alerts, silences, and status, is presented in Fig. 6. The

server feedbacks are received in real-time when the server

experienced a sudden downtime, overload, or warning. The

notifications in the monitoring system appear 2.4 minutes after

the incident, whereas the response time is at an average of 1.33

seconds.

TABLE II

TELEGRAM BOT SCENARIO TESTING

No Testing

I By entering the command “/alerts.”

II By entering the command “/silences”.

III By entering the command “/status”.

Fig. 6 Test of telegram bot

IV. CONCLUSION

This study produces a microservices server

monitoring system with Telegram Bot. From the results

of the tests that have been carried out, it can be concluded

that the monitoring system can run well because every

test carried out gives the expected results; namely, the

admin can receive a warning message via the Telegram

Bot. The author concluded that the messages are received

in real-time when the server computer/microservices

system experienced a sudden downtime or overload and

warning. The appearance of automatic notification in the

monitoring system is around 2.4 minutes after the

incident. Meanwhile, by entering the test

command/alerts, / silences, and / the average on the

Telegram Bot test, its response at an average of 1.33

seconds. With this monitoring system, when the server

computer/microservices system is down or overloaded,

the damage information can be conveyed to the admin in

real-time. It will be easier to get this information and be

quickly respond to repair when damage occurs.

REFERENCES

[1] D. Richter, M. Konrad, K. Utecht, and A. Polze,

“Highly-Available Applications on Unreliable

Infrastructure: Microservice Architectures in Practice,”

in 2017 IEEE International Conference on Software

Quality, Reliability and Security Companion (QRS-C),

Jul. 2017, pp. 130–137, doi: 10.1109/QRS-C.2017.28.

[2] “Microservices: Flexible Software Architecture

[Book].”

https://www.oreilly.com/library/view/microservices-

flexible-software/9780134650449/ (accessed Aug. 27,

2020).

[3] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S.

Tilkov, “Microservices: The Journey So Far and

Challenges Ahead,” IEEE Softw., vol. 35, no. 3, pp. 24–

35, May 2018, doi: 10.1109/MS.2018.2141039.

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Volume 8, Nomor 2, November 2020

Development of Bot for Microservices … | Deriyanto, S.P., Santoso, H.A., 141 – 147 147

[4] B. Mayer and R. Weinreich, “A Dashboard for

Microservice Monitoring and Management,” in 2017

IEEE International Conference on Software

Architecture Workshops (ICSAW), Apr. 2017, pp. 66–

69, doi: 10.1109/ICSAW.2017.44.

[5] M. Cinque, R. Della Corte, and A. Pecchia,

“Microservices Monitoring with Event Logs and Black

Box Execution Tracing,” IEEE Trans. Serv. Comput.,

pp. 1–1, 2019, doi: 10.1109/TSC.2019.2940009.

[6] M. A. Rosid, A. Rachmadany, M. T. Multazam, A. B.

D. Nandiyanto, A. G. Abdullah, and I. Widiaty,

“Integration Telegram Bot on E-Complaint

Applications in College,” IOP Conf. Ser. Mater. Sci.

Eng., vol. 288, p. 012159, Jan. 2018, doi: 10.1088/1757-

899X/288/1/012159.

[7] M. Zennaro, M. Rainone, and E. Pietrosemoli, “Radio

Link Planning Made Easy with a Telegram Bot,” in

Smart Objects and Technologies for Social Good,

Cham, 2017, pp. 295–304, doi: 10.1007/978-3-319-

61949-1_31.

[8] H. Setiaji and I. V. Paputungan, “Design of Telegram

Bots for Campus Information Sharing,” IOP Conf. Ser.

Mater. Sci. Eng., vol. 325, p. 012005, Mar. 2018, doi:

10.1088/1757-899X/325/1/012005.

[9] D. Korotaeva, M. Khlopotov, A. Makarenko, E.

Chikshova, N. Startseva, and A. Chemysheva,

“Botanicum: a Telegram Bot for Tree Classification,” in

2018 22nd Conference of Open Innovations Association

(FRUCT), May 2018, pp. 88–93, doi:

10.23919/FRUCT.2018.8468278.

[10] “PPDIOO Stages > Cisco’s PPDIOO Network Cycle |

Cisco Press.”

https://www.ciscopress.com/articles/article.asp?p=169

7888&seqNum=2 (accessed Aug. 27, 2020).

[11] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging

microservices architecture by using Docker

technology,” in SoutheastCon 2016, Mar. 2016, pp. 1–

5, doi: 10.1109/SECON.2016.7506647.

[12] C. Kaewkasi, Docker for Serverless Applications:

Containerize and orchestrate functions using

OpenFaas, OpenWhisk, and Fn. Packt Publishing Ltd,

2018.

[13] J. Mohorko, F. Matjaž, and K. Saša, “Advanced

Modelling and Simulation Methods for Communication

Networks,” p. 6, 2008.

[14] S. Basso, A. Servetti, and J. C. De Martin, “The network

neutrality bot architecture: A preliminary approach for

self-monitoring of Internet access QoS,” in 2011 IEEE

Symposium on Computers and Communications (ISCC),

Jun. 2011, pp. 1131–1136, doi:

10.1109/ISCC.2011.5983857.

[15] R. van Tonder and C. Le Goues, “Towards

s/engineer/bot: Principles for Program Repair Bots,” in

2019 IEEE/ACM 1st International Workshop on Bots in

Software Engineering (BotSE), May 2019, pp. 43–47,

doi: 10.1109/BotSE.2019.00019.

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Volume 8, Nomor 2, November 2020

148

