
JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247 239

Performance Evaluation of

Digital Image Processing by Using Scilab

Rudi Heriansyah1, Wahyu Mulyo Utomo2

1Computer Engineering Technology Section, Malaysian Institute of Information Technology, Universiti Kuala

Lumpur, Malaysia
2Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn, Johor, Malaysia

1rudi@unikl.edu.my, 2wahyu@uthm.edu.my

Abstract - Scilab is an open-source, cross-platform

computational environment software available for

academic and research purposes as a free of charge

alternative to the matured computational copyrighted

software such as MATLAB. One of important library

available for Scilab is image processing toolbox dedicated

solely for image and video processing. There are three

major toolboxes for this purpose: Scilab image processing

toolbox (SIP), Scilab image and video processing toolbox

(SIVP) and recently image processing design toolbox

(IPD). The target discussion in this paper is SIVP due to its

vast use out there and its capability to handle streaming

video file as well (note that IPD also supports video

processing). Highlight on the difference between SIVP and

IPD will also be discussed. From testing, it is found that in

term of looping test, Octave and FreeMat are faster than

Scilab. However, when converting RGB image to grayscale

image, Scilab outperform Octave and FreeMat.

Keywords: Scilab, image processing, video processing,

computational free software

I. INTRODUCTION

Scilab was created in 1990 by researchers from

INRIA and ENPC as a free platform for academia to

support their daily research activities [1]. Since May

20013, in order to broaden its contributions and

promoting Scilab as worldwide reference software in

academia and industry, the Scilab Consortium has been

established. Since July 2012, Scilab is developed and

published by Scilab Enterprises which was created by the

Consortium for developing and marketing directly

through an international network or affiliated service

providers. Scilab Enterprises also has partnership with

Equalis since September 2010 in providing Scilab Online

Support (SOS) Services.

Scilab was written in C/C++, Java and Fortran that

works under GNU/Linux, Windows, Mac OS X and

BSD operating systems. The discussion in this paper is

based on the release is 5.4.1. The software is also

available in several foreign languages rather than

English, such as German, Spanish, Russian, Chinese, and

so on. Scilab resembles MATLAB [2] in syntax and

using matrices as the main data types. Xcos is a free

package of Scilab for modeling and simulation of

explicit and implicit dynamical systems that compared to

Simulink in MATLAB. Scilab also includes a translator

for the code conversion from MATLAB to Scilab.

External developers have contributed to many

functionalities modules/toolboxes for Scilab under the

name ATOMS (AuTomatic Modules Management for

Scilab). This ATOMS console manages for installing,

uninstalling and updating purposes. These modules

cover many aspects of applications, for instance

aerospace, data analysis and statistics, mathematics and

optimization, graphics, image and signal processing,

control, physics, and real-time libraries.

Image processing module in Scilab comes from three

different developers. The first recognized module is

Scilab Image Processing (SIP) toolbox developed by

Ricardo Fabbri [3]. It has a very extensive 74 built-in

functions to manipulate image, color image processing

[4], filtering, edge detection, segmentation,

transformation, morphological operations, shape

analysis and contrast manipulation [5]. However, it

cannot handle streaming images or video file. It was also

fully targeted to work under GNU/Linux operating

systems. Hence up to its Linux SIP 0.5.6 version, there

is no stable release of the toolbox that work well under

Windows operating system.

In order to cover the deficiency of SIP in handling

video file, the Scilab Image and Video Processing

(SIVP) toolbox has been introduced. Although SIVP has

less functionality compared to SIP, but it can handle

streaming images or video file and also work well under

Windows operating system [6]. Recently, alternative for

image processing working under Scilab is Image

Processing Design (IPD) toolbox [7]. SIVP and IPD

almost have similar functionalities and IPD also works

well under Windows. This paper puts attention more on

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

240 Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247

SIVP due to its large use in academic research. The

discussion will be based on SIVP version 0.5.3.1-2.

Background for this writing is to explore Scilab as a

free computational tool and will focus on image

processing modules as conducted by [8], [9], [10]. This

study is important to provide users on the free alternative

when they do not have access to the paid licensed

software. Comparative study also will be carried out with

others free tools, such as Octave and Freemat. Next

section discusses many aspects of SIVP, including its

available built-in functions and categorization of these

functions according to their usage. Practical uses of these

functions discuss in Section 3 in which shall be

concluded in Section 4. List of references are given at the

end of the paper.

II. METHOD

SIVP aims to give some free and fully functional

libraries for image and video processing under Scilab

environment. It has been ported to work under any Unix-

like operating systems and also run smoothly under

Microsoft Windows. It was written using C and TCL/TK

programming languages. It was developed based on

OpenCV (Open Source Computer Vision Library), a free

library from Intel [11].

Basically, it has around 55 built-in functions for the

various use of processing image and video. It can be then

divided into few main categories: image I/O (3

functions), image data type conversions (6 functions),

image color conversions (7 functions), spatial

transformation (4 functions), image analysis and

statistics (16 functions), image arithmetic (6 functions),

linear filtering (3 functions) and 11 functions for video

processing.

The easiest way to install SIVP is through Scilab

interface. From Applications menu, click sub-menu

Module manager – ATOMS. A new window will launch

that lists all available modules. Click Image Processing

module, it will list two modules Image Processing

Design Toolbox (IPD) and Scilab Image and Video

Processing Toolbox (SIVP). Click at the suitable SIVP

module and click button [Install] to start installing

process of SIVP. Wait until Scilab finish in installing

SIVP module and after that quit from Scilab environment.

Launch Scilab again and it should show SIVP module

loaded at the Scilab console as in Fig. 1(a). Also note that

the icon of SIVP module in ATOMS window will change

to green color once it has been successfully installed.

Another method is by installing the package

independently from outside Scilab environment. To see

SIVP functions, just click Scilab Help menu and then go

down to SIVP installed module and expand the tree to

see all available functions as shown in Fig. 1(b).

III. RESULTS AND DISCUSSION

To start our image processing journey in Scilab using

SIVP, first load any image into computer memory. SIVP

read image function support various type of images to

read, such as Windows bitmaps (BMP, DIB), JPEG files

(JPEG, JPG, JPE), Portable Network Graphics (PNG),

Portable image format (PBM, PGM, PPM), Sun rasters

(SR, RAS) and TIFF images (TIFF, TIF). The read image

is shown in Fig. 2. This window enables the user to

zoom-in and zoom-out the image.

To observe the active folder can use the pwd

command in the console window. To know SIVP folder,

can execute this getSIVPpath() function. There are few

functions to manipulate colors, basically to convert RGB

image into grayscale, HSV, NTSC, YCbCr image and

vice-versa.

(a)

(b)

Fig. 1 Installing SIVP: (a) SIVP module loaded; (b) SIVP module loaded

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247 241

Fig. 2 Load an image

Fig. 3 shows various color image types after

executing rgb2gray(), rgb2hsv(), rgb2ntsc() and

rgb2ycbcr() functions respectively. Any of these color

types can be converted back into RGB by using available

built-in functions, for example to convert HSV image

into RGB image, just employ hsv2rgb() function.

To convert a graysscale image into binary image [12],

im2bw() function can be used as well. Grayscale image

is basically an image with few levels of gray shade [13].

For a 8-bit system, there are 256 gray levels, in which the

lowest level is black color at 0 intensity and the highest

level is 255 indicate a white color. In contrary, a binary

image has only two gray levels or two colors only, either

black or white, 0 intensity is black and 1 is white. To

convert from grayscale image to binary image, a

threshold value should be determined. For example when

threshold value is decided to be 0.5, then any intensities

below 127 will convert to 0 or black color and any

intensities higher or equal to 128 will be convert to 1 or

white color in binary image. Fig. 4(a) shows a binary

image by setting threshold value equal to 0.5 by

employing im2bw() function.

Image complement is an image that has an opposite

intensity from the original image. In the case of binary

image, black and white pixel will become white and

black pixel respectively for the complement image.

Observe image in Fig. 4(b) which is the complement

image of Fig. 4(a). It is obvious from the figure that it

has an opposite intensities for every pixels of the original

binary image. The function imcomplement() can be used

for this purpose. In the case of intensity image,

complement image obtained by subtracting each pixel

with the maximum pixel value of the original image.

It is also worthy to note that image complement also

simply can be obtained by put the operator “~” in front

of original image, for instance this expression ~img will

convert the original image into a complement image. Fig.

4(c) shows this complement image from a RGB image.

Another useful features to coloring image is by using

built-in colormap in Scilab. There are at least 15 built-in

colormaps, such as bonecolormap(), hotcolormap(),

jetcolormap() and so on. To use this colomap, the

function ind2rgb() can be used in which it requires two

parameters the indexed image and the designated

colormap. Hence, any color images should be then

converted first into an indexed image (grayscale also

considered as an indexed image). For example, this code

indImg = ind2rgb(img, cmap) in which cmap =

jetcolormap(256) will map the original image into a jet

color map by executing imshow(indImg) as shown in Fig.

4(d).

A. Image Filtering & Detection

There are at least three built-in functions to perform

filtering on image using SIVP. The functions imfilter()

and filter2() will perform filtering based on input

parameters. These functions requires two input

parameters: input image and any filter that want to be

applied. Another function fspecial() will create some 2D

special filters, such as sobel, prewitt, gaussian, laplacian,

log, average and unsharp filters [14]. Note that the only

difference of imfilter() and filter2() is the output of

filter2() is double matrix and the output of imfilter() has

the same type as input and the elements in the output

matrix that exceed the range of the integer type will be

truncated.

The use of the filter function is straight forward. First

step is to determine or create the filter that want to be

used. After that pass the created filter to either one

available imfilter() or filter2() functions. The image filter

with sobel shown in Fig. 5. By default, all these filter

operators are working in RGB images directly.

As for edge detection, the source image must be a

single channel or grayscale image otherwise an error will

be occured if the input image is multi-channel or color

image. There are five edge detectors available: sobel,

prewitt, laplacian of gaussian [15], FFT gradient and

canny edge detector. The built-in function edge()

requires four input parameters: source image, detector

type, threshold value and direction of the edge detector.

The first two is compulsory and the last two if not

provided, the default values will be used then.

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

242 Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247

(a)

(b)

(c)

(d)

Fig. 3 Various types of color images: (a) Grayscale image; (b) HSV

image; (c) NTSC image; (d) YCbCr image

(a)

(b)

(c)

(d)

Fig. 4 Various types of intensity images: (a) Binary image; (b) Image

complement of (a); (c) Complement of grayscale image; (d) Indexed

image with jet colormap

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247 243

Fig. 5 Image filtering with Sobel filter

Fig. 6 Code for edge detection operation

Fig. 7(a) shows an implementation of the edge

detection by using prewitt detector [16] by using the

following code in Fig. 6. The canny detector [17]

implementation is shown in Fig. 7(b). To clarify the

detected edges, one can invert any edge image by

applying imcomplement() function or just simply negate

the edge image using “~” operator as shown in Fig. 7(c).

(a)

(b)

(c)

Fig. 7 Edge detection: (a) Prewitt edge detection; (b) Canny edge detection; (c) Complement of (c)

B. Image Arithmetic

Another interesting built-in function in SIVP is

functions to do image arithmetic. Using these functions,

it is possible to do some mathematical based operation to

any images, for example to do some addition, subtraction,

division, multiplication and also to calculate absolute

difference between two images.

Each function basically will work at pixel level or

point operation level in which two input parameters are

required. The first parameter usually an input image and

the second parameter can be also an image or double

scalar. If both input are images, then the size of both

images must be similar and color channels must be the

same as well. Hence, it is not possible to work if the first

image is RGB and the second image is grayscale. Rather

than image as the second input parameter, applying

double scalar or numerical value is also possible. For

example in the case of image addition using imadd()

function, adding scalar will either darker or brighter

pixels of the output image. Fig. 9 shows two images for

image addition operation. The first image is in Fig. 9(a)

and the second image is in Fig. 9(b). The output image is

shown in Fig. 9(c) which now becomes combination of

both images. Code implementation of image addition is

shown below in Fig. 8.
Fig. 10 shows image addition operation by involving scalar.

The original image is as in Fig. 9(b). The code is still similar

as in Fig. 9(a), however now img2 is replaced with a

numerical value. Fig. 10(a) and (b) are the output images when

adding the input image with 180 and -180 respectively. It is

obvious then adding positive constant will make the output

image brighter and adding by negative number will make the

output image darker. Therefore, adding 0 to the input image

will give no effect at all.

Fig. 8 Code for image addition operation

img = imread(‘siblings.jpg’);

imgray = rgb2gray(img);

edgeS = edge(imgray, ‘prewitt’);

imshow(edgeS);

img1 = imread(‘siblings.jpg’);

img2 = imread(‘redsea.jpg’);

ims = imadd(img1, img2);

imshow(ims)

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

244 Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247

(a)

(b)

(c)

Fig. 9 Image addition of two images: (a) first image; (b) second image; (c) output image

(a)

(b)

Fig. 10 Image addition by scalar to original image: (a) Adding 180; (b) Adding −180

C. Video Processing

The power of SIVP is laid on its capability to handle video

stream. There are few built-in functions to handle these

streaming images. In this concern, at least there are three

important functions for this purpose: aviopen(),

avreadframe(), avclose(). Anytime when an open

event is not employed anymore by the program, it then should

be closed properly to save the usage of computer memory.

D. SIVP versus IPD Toolbox

SIVP and IPD although almost have the same

functions, however there few functions in which they are

different and this actually complement each other. There

are few functions in IPD which are not available in SIVP,

for example the functions for Otsu thresholding [18],

morphological operations, texture energy, wavelet and

watershed based segmentation. Also note that installing

IPD is straight forward and basically just similar as

installing SIVP as already described in Fig. 1.

Fig. 11(a) is a binary image after thresholding Fig. 9(a)

with famous Otsu method [19] using

CalculateOtsuThreshold() function. Fig. 11(b), (c), (d)

are images after applying erosion, dilation and bottom

hat filter to the original image. These are among

important functions in analyzing binary image properties

or behaviours. One may note that in showing image, IPD

uses default Scilab window that allow to open few

windows simultaneously in which SVIP with its Tk-

based window cannot do. This multiple windows show

is very useful in case one need to analyze many images

at the same time and really make life of the user easier.

However, SIVP uses only one function imshow() to

show image for whatever type (grayscale or color), in

which IPD uses two function separately ShowImage()

and ShowColorImage() respectively for this purpose. By

this respect, SIVP seems more flexible rather than IPD.

E. Performance Evaluation

Previous sections give some clear ideas in how to

work with SIVP in Scilab development environment.

Various examples in processing images have been shown

that indicates the effectiveness of the library and the

benefit of working in Scilab environment. Few

highlights also have been shown on the differences

between two image processing toolboxes: SIVP and IPD.

The user can decide then in which toolbox that more

suitable for their daily image processing works.

This section conducts further studies to explore

performance of several freeware for image processing.

Freeware interest is important since it will give all access

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247 245

to image processing libraries at no cost and promptly. So

then, all level of communities can access and get benefits

from such software. Another two image processing

freeware will be compared with Scilab, i. e. Octave and

Freemat due to its popularity among the communities.

Octave is well-known due to its MATLAB-like

interface, syntax and internal commands [20]. Freemat

although is a new competitor in this area, but it has a

quite comprehensive library [21]. Performance

evaluation of these image processing freeware is carried

out in term of speed processing, since it would be a fairer

comparison to understand the effectiveness of the

internal routines of the freeware in processing the data

internally. The Intel® Core i7 2.4GHz with 8GB DDR3

RAM are used to serve this purpose.

The tests are conducted by using some built-in

functions with the same purposes. There are four tests

that have been performed. The first test is by applying a

looping test in which each software need to loop for one

million times. This is a very basic test to give some

general idea on the speed performance of each software

broadly. The second test is an extension of the first test

in which now by printing simple text at the console

window of the application. The last test is dealing with

image processing conversion from RGB to grayscale.

The size of the image is 1536×2048 in height and width

respectively. Pixel intensity averaging is used for

conversion. In which each R, G, B pixels will be divided

by number of 3.

Table I shows the results for this performance

evaluation. For the first two tests, indicates that the

Scilab around 50% slower than the other two

comparators. These tests are simply straightforward

looping operation in which the interpreter need to do

loop for one million times.

However, for the last test, when converting RGB

image into grayscale image, it is obvious that the Scilab

outperforms the other two. Although this test is not

comparing apple-to-apple of the built-in image

processing functions in all software, such as for image

reading and displaying, but it gives a clear idea on the

capability of Scilab to process arrays at the real time,

which is the main function in processing images.

It only takes 111.392s for Scilab to do this averaging

operation, in which it was 145.69s and 621.399s for

Octave and Freemat respectively. At this sense, Scilab

30% faster than Octave and 556% or five times faster

than Freemat.

(a)

(b)

(c)

(d)

Fig. 11 Some operations using IPD toolbox: (a) Otsu thresholding; (b) Eroded

image; (c) Dilated image; (d) Bottom hat filtered image

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

246 Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247

TABLE I

PERFORMANCE EVALUATION

Test Set
Speed (seconds)

Scilab Octave Freemat

Looping one million

times.

0.303 0.150 0.157

Looping one million

times and write some

text onto the hard

disk.

106.501 57.791 52.051

Converting RGB into

grayscale image

(1536×2048)

111.392 145.69 621.399

IV. CONCLUSION

The existence of free image processing toolbox under

Scilab environment, really helps so many researchers to

do their research with peace of mind from copyright

issues. Although, not each single toolbox can handle

everything but they can synergize if one installs them all

in his machine. SIVP and IPD work well under Windows

and may give all their functionalities if installed together

in Scilab environment. SIP provide more libraries

(although does not support video processing) that will

equip researchers with all necessaries for their daily

research activities and also a really good option for

Linux-based users. At the performance evaluation part as

shown in Table I, it is obvious that Scilab has a very good

performance in dealing with processing numerical two-

dimensional arrays which is basically the main point in

any image processing algorithms. Therefore, Scilab is

one of the best alternative for image processing

applications with not cost at all.

ACKNOWLEDGMENT

The authors would like to express their gratitude to

the Computer Engineering Technology Section,

Malaysian Institute of Information Technology,

Universiti Kuala Lumpur, Malaysia and Faculty of

Electrical and Electronic Engineering, Universiti Tun

Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia for

providing any supporting facilities and conducive

environment that makes this research and writing a

smooth and joyful processes.

REFERENCES

[1] M. Affouf, Scilab by Example. CreateSpace Independent

Publishing Platform, 2012.

[2] B. R. Hunt, R. L. Lipsman, J. M. Rosenberg, K. R.

Coombes, J. E. Osborn, and G. J. Stuck, A Guide to

MATLAB: For Beginners and Experienced Users.

Cambridge University Press, 2006.

[3] R. Fabbri, O. M. Bruno, and L. da F. Costa, “Scilab and

SIP for Image Processing,” Mar. 2012.

[4] J. Q. Odeh, F. Ahmad, M. Othman, and R. Johari, “Image

Retrieval System Based on Density Slicing of Colour

Histogram of Images Subareas and Colour Pair

Segmentation,” Int. Arab J. Inf. Technol., vol. 1, no. 2,

pp. 196–202, 2004.

[5] J. Druel, “A SIP User Manual for SIP version 0.3 (rev.

1),” 2004.

[6] S. Yu and S. Shang, “SIVP – Scilab Image and Video

Processing Toolbox,” 2006.

[7] H. Galda, “Image Processing with Scilab and Image

Processing Design Toolbox,” 2011.

[8] J. S. Sohal, “Improvement of artificial neural network

based character recognition system, using SciLab,” Optik

(Stuttg)., vol. 127, no. 22, pp. 10510–10518, 2016.

[9] R. Senthilkumar and R. K. Gnanamurhty, “Improvement

and solution to the problems arise in the implementation

of facial image recognition algorithms using open source

software scilab,” World Appl. Sci. J., vol. 34, no. 12, pp.

1754–1761, 2016.

[10] S. Chopparapu and B. Seventline, “Object detection

using Matlab, Scilab and Python,” Technology, vol. 11,

no. 6, pp. 101–108, 2020.

[11] A. Kaehler and G. Bradski, Learning OpenCV 3.

O’Reilly Media, Inc., 2016.

[12] J. M. Kinser, Image Operators: Image Processing in

Python. CRC Press, 2019.

[13] R. C. Gonzalez and R. E. Woods, Digital Image

Processing, 4th ed. Pearson, 2018.

[14] C. Solomon and T. Breckon, Fundamentals of Digital

Image Processing: A Practical Approach with Examples

in MATLAB. Wiley-Blackwell, 2012.

[15] S. L. Tanimoto, An Interdisciplinary Introduction to

Image Processing: Pixels, Numbers, and Programs.

Massachusetts Institute of Technology, 2012.

[16] P. Selvakumar and S. Hariganesh, “The performance

analysis of edge detection algorithms for image

processing,” in 2016 International Conference on

Computing Technologies and Intelligent Data

Engineering (ICCTIDE’16), 2016, pp. 1–5.

[17] Z. Xu, X. Baojie, and W. Guoxin, “Canny edge detection

based on Open CV,” in 2017 13th IEEE International

Conference on Electronic Measurement & Instruments

(ICEMI), 2017, pp. 53–56.

[18] A. McAndrew, A Computational Introduction to Digital

Image Processing, 2nd ed. Taylor & Francis Group, LLC,

2016.

[19] N. Li, X. Lv, B. Li, and S. Xu, “An Improved Otsu

Method Based on Uniformity Measurement for

Segmentation of Water Surface Images,” in 2019

International Conference on Internet of Things (iThings)

and IEEE Green Computing and Communications

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

Performance Evaluation of Digital … | Heriansyah, R., Utomo, W.M., 239 – 247 247

(GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data

(SmartData), 2019, pp. 675–681.

[20] J. S. Hansen, GNU Octave Beginner’s Guide. Packt

Publishing, 2011.

[21] G. Schafer and T. Cyders, “The Freemat 4.0 Primer,”

2011.

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 2, November 2021

248

