The Effect Of Particle Size On The Characterization Of Activated Carbon From Tropical Black Bamboo (Gigantochloa Atroviolacea)

Envrinda Arief Fauzia, Herry Purnama

Abstract


Activated carbon also known as activated charcoal is a common term for carbon materials, which comprises charcoal. Activated carbon has a good adsorption capacity against gases and pollutants in liquids because of its wide surface. The material used in this research was tropical black bamboo, with the variation of particle size -10+20 mesh, -20+40 mesh, -40+60 mesh and -60+80 mesh.  There are 2 processes to produce activated carbon, i.e. carbonation and activation. In this research, the carbonation is set at 380°C in 1 hour. Then, each size of carbon was activated by H3PO4 9.8% along 24 hours. The analysis conducted were moisture content, ash content, iodine number, and functional group analysis using Fourier Transform Infrared Spectroscopy (FTIR). The smaller particle size, the more pores will be produced and it caused the surface area higher. The results showed that variation of particle size had effect on the characterization and quality of activated carbon, where moisture content is between 10.60 to 4.05%, ash content is 1% to 0.2% and iodine adsorption is between 710 mg/g to 900 mg/g. In FTIR analysis, it showed that all of the samples had O-H, C=C, and C-O functional group.


References


[1] Hesas RH, Arami-Niya A, Wan Daud WMA, Sahu JN. "Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption." BioResources. 2013. 8(2):2950–66.

[2] Anggraini PD. "Pengolahan Limbah Cair Industri Tekstil Batik dengan Menggunakan Metode Fotokatalis Tio2 – Karbon Aktif Tempurung Kelapa" Politeknik Perkapalan Negeri Surabaya. 2019.

[3] Saeidi N, Lotfollahi MN. "Effects of Powder Activated Carbon Particle Size on Adsorption Capacity and Mechanical Properties of the Semi Activated Carbon Fiber." Fibers and Polymers. 2015.16(3):543–9.

[4] Mahanim SMA, Wan Asma I, Rafidah J, Puad E, Shaharuddin H. "Production of Activated Carbon from Industrial Bamboo Wastes." Journal of Tropical Forest Science. 2011. 23(4):417–24.

[5] Tadda MA, Ahsan A, Shitu A, ElSergany M, Arunkumar T, Jose B, et al. "A Review on Activated Carbon: Process, Application and Prospects. Journal of Advanced Civil Engineering Practice and Research." 2016;2(1):7–13.

[6] Efeovbokhan VE, Alagbe EE, Odika B, Babalola R, Oladimeji TE, Abatan OG, et al. "Preparation And Characterization of Activated Carbon From Plantain Peel And Coconut Shell Using Biological Activators." Journal of Physics: Conference Series. 2019. 1378(3):1-17.

[7] Choirunnisa A, Wahyuningsih NE, Ginandjar P. "Efektivitas Variasi Ketebalan Arang Aktif Bambu dalam Menurunkan Kadar Kadmium (Cd) pada Larutan Pupuk Mengandung Kadmium." Jurnal Kesehatan Masyarakat (e-Journal). 2018. 6(6):17–23.

[8] Huang PH, Jhan JW, Cheng YM, Cheng HH. "Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide." The Scientific World Journal. 2014;1–8.

[9] Prabarini, N and Okayadnya DG. "Penyisihan Logam Besi (Fe) pada Air Sumur dengan Karbon Aktif dari Tempurung Kemiri." Jurnal Ilmiah Teknik Lingkungan. 2014. 5(2):33–41.

[10] Erawati E and Ardiansyah F. "Effect of Activator Types and Active Carbon Size on the Making of Adsorbents from Sengon Wood Sawdust (Paraserianthes falcataria)." Jurnal Integrasi Proses. 2018. 7(2):58–66.

[11] Manurung M, Sahara E, Sihombing PS. "Pembuatan dan Karakterisasi Arang Aktif dari Bambu Apus (Gigantochloa apus) dengan aktivator H3PO4". Jurnal Kimia. 2019. 13(1):16-21.

[12] Laos LE, Selan A. "Pemanfaatan Kulit Singkong sebagai Bahan Baku Karbon Aktif." Jurnal Ilmu Pendidikan Fisika. 2016;1(1):32–6.

[13] Istighfarini SAE, Daud S, Edward H. "Pengaruh Massa dan Ukuran Partikel Adsorben Sabut Kelapa Terhadap Efisiensi Penyisihan Fe Pada Air Gambut." Jom FTEKNIK. 2007. 4(1):1-8.

[14] Maulinda L, Za N, Sari DN. "Pemanfaatan Kulit Singkong sebagai Bahan Baku Karbon Aktif." Jurnal Teknologi Kimia Unimal. 2015. 4(2):11–9.

[15] Nurull F and Ulfindrayani IF. "Sintesis dan Karakterisasi Karbon Aktif dari Limbah bambu Menggunakan Aktivator Asam Pospat (H3PO4)." Prosiding Seminar Nasional Sains dan Teknologi Terapan. 2019. 1(1):741–6.

[16] Bernal V, Giraldo L, Moreno-Piraján J. "Physicochemical Properties of Activated Carbon: Their Effect on the Adsorption of Pharmaceutical Compounds and Adsorbate–Adsorbent Interactions." Journal of Carbon Research. 2018. 4(62):1-20

[17] Yanti N, Anas M, Eso R. "Pengaruh Variasi Ukuran Bulir dan Waktu Aktivasi terhadap Daya Serap Arang Tandan Aren Pada Iodium (I2) dan Metilen Blue (MB)." Jurnal Penelitian Pendidikan Fisika. 2020. 5(1):78-88.

[18] Nandiyanto ABD, Oktiani R, Ragadhita R. "How to Read and Interpret FTIR Spectroscope of Organic Material." Indonesian Journal of Science and Technology. 2019. 4(1):97–118.

[19] Mentari VA and Maulina S. "Perbandingan Gugus Fungsi dan Morfologi Permukaan Karbon Aktif dari Pelepah Kelapa Sawit Menggunakan Aktivator Asam Fosfat (H3PO4) dan Asam Nitrat (HNO3)." Talenta Conference Series: Science and Technology (ST). 2018. 1(2):204–8.

[20] Putri E and Anita S. "Potensi Arang Aktif Bambu Betung (Dendrocalamus Asper) Sebagai Adsorben Ion Mn2+ dan NO3- dalam Air Sumur Bor Buruk Bakul." 2016. 3:203–42.


Full Text: PDF

DOI: 10.30595/techno.v22i2.10350

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2579-9096