Prediksi Kelulusan Tepat Waktu Menggunakan Metode C4.5 DAN K-NN (Studi Kasus : Mahasiswa Program Studi S1 Ilmu Farmasi, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto)

Eko Purwanto, Kusrini Kusrini, Sudarmawan Sudarmawan

Abstract


The graduation profile is one of the key elements for the accreditation standard of higher education. It mirrors the performance of the applied educational system within a period of time. The better it is, the better the accreditation will be. In support of this, a graduation prediction may be conducted to the academic database of the students. It is of pivotal to trace and classify the historical data into the data training and data testing, thus, to predict the on time-graduation. The step is importantly done to help decide the better management of learning processes. This study was therefore done to analyse certain variables applied to predict the on time-graduation using the algorythms of C.45 and K-Nearest Neighbour (K-NN). The data mining was done to the academic database of the students of the Pharmacy study programme, Pharmacy Faculty, Muhammadiyah University of Purwokerto by adding certain variables into the process. The data was then classified into the data training and data testing. Backward selection was done to select the best and most influential variables for the dataset. The study further resulted that by using the algorhythm of C.45 and backward selection, the accuracy of the graduation reached 92.75%. It is different from the acurracy the K-NN and backward selection showed that reached 96.14%. The result confirmed that the KNN showed the better accuracy than the C.45. It considerably benefitted the study programme to make better decisions on increasing the quality of services, in particular that of leraning processes.

References


[1] Aggarwal, Charu J. 2015. Data Mining: The Textbook. Springer. New York.

[2] Kusrini dan Luthfi, E. T., 2009. Algoritma Data Mining. Yogyakarta : Penerbit Andi.

[3] Han, Jiawei, Kamber, Micheline, dan Pei, Jian. 2012. Data Mining: Concepts and Techniques.Edisi ketiga.Morgan Kaufmann Publishers. USA.

[4] Witten, Ian H. dan Frank, Eibe. 2005. Data Mining: Practical Machine Learning Tools and Techniques.Edisi kedua.Morgan Kaufmann Publishers. San Fransisco.

[5] Atma, Yeyen Dwi dan Setyanto, Arief. 2018. “Perbandingan Algoritma C4.5 Dan K-NN Dalam Identifikasi Mahasiswa Berpotensi Drop Out”. Jurnal Metik. Vol. 2 No.2.hal.31-37.

[6] Mustafa, M. S. and Simpen, I. W., 2014.“Perancangan Aplikasi Prediksi Kelulusan Tepat Waktu Bagi Mahasiswa Baru Dengan Teknik Data Mining (Studi Kasus: Data Akademik Mahasiswa STMIK Dipanegara Makassar)”.Citec J.Vol. 1. hal. 270–281.

[7] Mustakim,Giantika O, 2016 “Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa.”J. Sains dan Teknol. Ind. Vol. 13. No. 2.hal.195–202.

[8] Ndaumanu, R. I. Arief, M. R., dan Kusrini. 2014. “Analisis Prediksi Tingkat Pengunduran Diri Mahasiswa dengan Metode K-Nearest Neighbor,” Jatisi. Vol. 1, No. 1.hal.1–15.

[9] Putri, Ratna Puspita Sari dan Waspada, Indra.Juni 2018.“Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatik”.Khazanah Informatika, Vol. 4 No. 1, Juni, 2018.hal.1-7.

[10] Risnawati.Juni 2018 “Analisis Kelulusan Mahasiswa Menggunakan Algoritma C.45”. Jurnal Mantik Penusa.Volume 2, No. 1.hal.71-76.

[11] Rohmawan, Eko Prasetiyo. April 2018. “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dan Artificial Neural Network”.Jurnal Ilmiah Matrik Vol.20 No.1.


Full Text: PDF

DOI: 10.30595/techno.v20i2.5160

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2579-9096