Pengaruh Koefisien Performa pada Turbin Angin Sumbu Horizontal Tipe Taperless dengan Variasi Jumlah Bilah Guna Mendukung Ketahanan Energi di Wilayah Jawa Barat
Abstract
Currently, the energy we use comes from the use of fossil energy. In the future, fossil energy will experience a reduction and will eventually run out because it has limits to its availability. One way to reduce the impact of dependence on the use of fossil energy is to utilize wind energy sources, which are one of the environmentally friendly renewable energies. Currently, the use of wind energy continues to be developed, one of which is a wind energy conversion system which utilizes wind energy sources into electrical energy by converting wind kinetic energy into mechanical energy through wind turbine blades and then converting it into electrical energy through a generator. In this research, we examine how a horizontal shaft wind turbine performs with variations in the number of blades with the aim of obtaining optimal performance coefficient values. The tests carried out in this research were with simulations on Q Balde v 0.96 software with variations in the number of blades from 3 - 5 with a wind speed range ranging from 3 m/s – 12 m/s. The research results show that the best CP value is the 4 blade horizontal axis wind turbine which has a CP value of 6% compared to the 3 blade wind turbine with 4 blades, while the 4 blade horizontal axis wind turbine with 5 blades has a CP comparison value of 4%.
Keywords: Fossil energy, renewable energy, performance coefficient, wind turbine, wind energy
Abstract
Currently, the energy we use comes from the use of fossil energy. In the future, fossil energy will experience a reduction and will eventually run out because it has limits to its availability. One way to reduce the impact of dependence on the use of fossil energy is to utilize wind energy sources, which are one of the environmentally friendly renewable energies. Currently, the use of wind energy continues to be developed, one of which is a wind energy conversion system which utilizes wind energy sources into electrical energy by converting wind kinetic energy into mechanical energy through wind turbine blades and then converting it into electrical energy through a generator. In this research, we examine how a horizontal shaft wind turbine performs with variations in the number of blades with the aim of obtaining optimal performance coefficient values. The tests carried out in this research were with simulations on Q Balde v 0.96 software with variations in the number of blades from 3 - 5 with a wind speed range ranging from 3 m/s – 12 m/s. The research results show that the best CP value is the 4 blade horizontal axis wind turbine which has a CP value of 6% compared to the 3 blade wind turbine with 4 blades, while the 4 blade horizontal axis wind turbine with 5 blades has a CP comparison value of 4%.
Keywords: Fossil energy, renewable energy, performance coefficient, wind turbine, wind energy.
References
[1] Cakrawati Sudjoko, “Strategi Pemanfaatan Kendaraan Listrik Berkelanjutan Sebagai Solusi Untuk Mengurangi Emisi Karbon,” J. Paradig. J. Multidisipliner Mhs. Pascasarj. Indones., vol. 2, no. 2, pp. 54–68, 2021.
[2] I. Rizianiza, D. Setiorini, and A. Djafar, “Perancangan Prototipe Turbin Angin Sumbu Horizontal Tiga Sudu Studi Kasus Institut Teknologi Kalimantan,” SPECTA J. Technol., vol. 2, no. 3, p. 21, 2018, doi: 10.35718/specta.v2i3.7.
[3] A. E. Setyono and B. F. T. Kiono, “Dari Energi Fosil Menuju Energi Terbarukan: Potret Kondisi Minyak dan Gas Bumi Indonesia Tahun 2020 – 2050,” J. Energi Baru dan Terbarukan, vol. 2, no. 3, pp. 154–162, 2021, doi: 10.14710/jebt.2021.11157.
[4] J. Sih Setyono, F. Hari Mardiansjah, and M. Febrina Kusumo Astuti, “Potensi Pengembangan Energi Baru Dan Energi Terbarukan di Kota Semarang,” J. Riptek, vol. 13, no. 2, pp. 177–186, 2019, [Online]. Available: http://riptek.semarangkota.go.id.
[5] A. Mulkan, “Analisis Pemanfaatan Energi Angin Sebagai Sumber Pembangkit Energi Listrik,” J. Ilm. Tek. Unida, vol. 3, no. 1, pp. 74–83, 2022, [Online]. Available: https://ejournal.unida-aceh.ac.id/index.php/jitu/article/view/308.
[6] Istofa & Daru, “Unjuk Kerja Turbin Angin Dengan Profil Sudu NACA 4412 Dengan Metode Simulasi,” Semin. Nas. Sains Teknol. dan Inov. Indones. (SENASTINDO AAU), vol. 1, no. 1, pp. 19–26, 2019.
[7] M. Perdana, A. Akmal, R. Saputra, H. Fahmi, and S. Sulaiman, “Analisa Daya Turbin Angin Sumbu Horizontal BladeTaperless Berbahan Komposit Hybrid dengan AirfoilBlade Tipe NACA,” J. Rekayasa Energi dan Mek., vol. 2, no. 2, p. 145, 2022, doi: 10.26760/jrem.v2i2.145.
[8] E. Hau, Wind Turbines Fundamentals, Technologies, Application, Economics., Third. Munich, Germany, 2012.
[9] T. Multazam and A. Mulkan, “Rancang Bangun Turbin Angin Sumbu Horizontal Pada Kecepatan Angin Rendah Untuk Meningkatkan Performa Permanent Magnet Generator,” J. Serambi Eng., vol. 4, no. 2, pp. 616–624, 2019, doi: 10.32672/jse.v4i2.1446.
[10] J. F. Manwell, J. G. McGowan, and A. L. Rogers, “Wind Energy Explained: Theory, Design and Application,” in Wind Energy Explained: Theory, Design and Application, Second Edi., USA: A John Wiley and Sons, Ltd., 2010.
[11] R. Nanang, Gunarto, and E. Sarwono, “Study Eksperimental Berbagai Macam Jenis Sudu Turbin Angin Sumbu Horisontal Skala Laboratorium,” Repos. Univ. Muhammadiah Pontianak, vol. 3, no. 2, pp. 113–120, 2017DOI: 10.30595/cerie.v4i2.22081
DOI (PDF): http://dx.doi.org/10.30595/cerie.v4i2.22081.g7022
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2774-8006