Peningkatan Perpindahan Panas pada Pipa Radiator menggunakan SiO2/Water Nanofluida
Abstract
Penelitian ini bertujuan untuk mengevaluasi karakteristik perpindahan panas pada radiator dengan penggunaan nanofluida silikon dioksida (SiO2). Penelitian ini dilakukan secara eksperimental, skema penelitian terdiri dari sebuah tangki reservoir penampung air/nanofluida, heater sebagai pemanas air, pompa untuk mensirkulasikan air/nanofluida menuju radiator dan sebuah kipas pendingin untuk membuang panas. Hasil penelitian menunjukkan bahwa peningkatan rata-rata koefisien perpindahan panas sebesar 15% pada temperatur 60 oC. Peningkatan perpindahan panas maksimal terjadi pada konsentrasi 0.2 % sebesar 21 % pada bilangan reynolds sebesar 3200 pada temperatur 60 oC.
References
[1] Subhedar, D. G., Ramani, B. M., & Gupta, A. (2018). Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant. Case studies in thermal engineering, 11, 26-34.
[2] Leong, K. Y., Saidur, R., Kazi, S. N., & Mamun, A. H. (2010). Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering, 30(17-18), 2685-2692.
[3] Machhar, P., & Adroja, F. (2013). Heat transfer enhancement of automobile radiator with TiO2/water nanofluid. International Journal of Engineering Research and Technology. ESRSA Publications, 2(5).
[4] Eiamsa-Ard, S., Kiatkittipong, K., & Jedsadaratanachai, W. (2015). Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes. Engineering Science and Technology, an International Journal, 18(3), 336-350.
[5] Kumar, M. V., Kumar, J. V., Kumar, M. V. & Kumar, J. S. (2018). Optimization of heat transfer parameters to enhance cooling performance in automobile radiator using TiO2 nanofluid an coolant. International Journal of Current Engineering and Scientific Research (IJCCESR), 5(4).
[6] Arani, A. A., & Amani, J. (2012). Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop. Experimental Thermal and Fluid Science, 42, 107-115.
[7] Mehtre, D. N., & Kore, S. S. (2014). Experimental analysis of heat transfer from car radiator using Nanofluids. International journal of Mechanical engineering and computer applications, 2(4), 101-106.
[8] Hussein, A. M., Bakar, R. A., & Kadirgama, K. (2014). Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Studies in Thermal Engineering, 2, 50-61.
[9] Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170.
[10] Sajadi, A. R., & Kazemi, M. H. (2011). Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. International Communications in Heat and Mass Transfer, 38(10), 1474-1478.
[11] Duangthongsuk, W., & Wongwises, S. (2010). An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. International journal of heat and mass transfer, 53(1-3), 334-344.
[12] Dhiaa, A. H., Abdulwahab, M., & Thahab, S. M. (2015). Study The Convective Heat Transfer of TiO2/Water Nanofluid in Heat Exchanger System. Nanotechnology and Advanced Materials Research Unit (NAMRU), College of Engineering, University of Kufa, Iraq.
[13] Hussein, A. M., Dawood, H. K., Bakara, R. A., & Kadirgamaa, K. (2017). Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system. Case Studies in Thermal Engineering, 9, 72-78.
[14] Farajollahi, B., Etemad, S. G., & Hojjat, M. (2010). Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53(1-3), 12-17.
[15] Nikhil, Y. S., Goud, P. D., Babu, B. H. G. & Rasu, N. G. (2017). Experimental Investigation of Radiator Perfromance Using TiO2 Nanofluid. International Journal of Mechanical Engineering and Technology (IJMET), 8(6), pp. 607-614.
DOI: 10.30595/cerie.v4i2.23406
DOI (PDF): http://dx.doi.org/10.30595/cerie.v4i2.23406.g7087
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2774-8006