Aktivitas Penangkapan Radikal DPPH (1,1-Diphenyl-2-picrylhydrazyl) Ekstrak Madu Sebelum dan Sesudah Pemanasan

La Ode Sumarlin, Anna Muawanah, Amalia Istiqomah, Nurul Amilia, Tarso Rudiana, Sri Yadial Chalid, Hajar Hajar

Abstract


Pemanasan pada suhu dan waktu optimum dapat meningkatkan aktivitas antioksidan pada madu apis dan trigona karena meningkatnya total fenolik, total flavonoid dan pigmen coklat. Kemampuan antioksidan dapat diukur melalui kemampuan menangkap radikal oleh DPPH (1,1-Diphenyl-2-picrylhydrazyl).  Tujuan penelitian ini untuk membandingkan perubahan aktivitas antioksidan melalui parameter penangkapan radikal DPPH serta pigmen coklat pada 5 jenis madu apis dan 5 jenis madu trigona dari kota Bogor, Kalimantan, Sulawesi, dan Lombok pada sebelum dan sesudah dipanaskan yang diukur dengan menggunakan spektrofotometer UV-Vis.  Hasil penelitian ini menunjukkan persen inhibisi baik pada madu jenis apis maupun pada madu jenis trigona, cenderung mengalami peningkatan seiring dengan pertambahan suhu dan waktu pemanasan.  Pigmen coklat didapatkan cenderung mengalami peningkatan seiring dengan pertambahan suhu dan waktu pemanasan.  Kemampuan penangkapan radikal DPPH paling tinggi terdapat pada madu jenis trigona asal Lombok dengan nilai inhibisi 93% dan IC50 sebesar 3.435 ± 29,3 ppm dengan persentase kenaikan 59,1 % pada suhu 50o C selama 9 hari.   Dengan demikian, madu jenis Apis dan Trigona memiliki senyawa bioaktif  dengan kemampuan menangkap radikal DPPH diantaranya terbentuknya pigmen coklat serta berpotensi meningkat kemampuan antioksidannya melalui pemanasan pada suhu tertentu.


Keywords


Antioksidan; Penangkapan DPPH; Madu; Pemanasan; Pigmen Coklat

References


Arifin, B., & Ibrahim, S. (2018). Struktur, Bioaktivitas dan Antioksidan. Jurnal Zarah, 6(1), 21–29. https://doi.org/10.31629/zarah.v6i1.313

Ávila, S., Lazzarotto, M., Hornung, P. S., Teixeira, G. L., Ito, V. C., Bellettini, M. B., Beux, M. R., Beta, T., & Ribani, R. H. (2019). Influence of stingless bee genus (Scaptotrigona and Melipona) on the mineral content, physicochemical and microbiological properties of honey. Journal of Food Science and Technology, 56(10), 4742–4748. https://doi.org/10.1007/s13197-019-03939-8

Csepregi, K., Neugart, S., Schreiner, M., & Hideg, É. (2016). Comparative Evaluation of Total Antioxidant Capacities of Plant Polyphenols. Molecules, 21(2), 208. https://doi.org/10.3390/molecules21020208

de la Cueva, S., Seiquer, I., Mesías, M., Rufián-Henares, J., & Delgado-Andrade, C. (2017). Evaluation of the Availability and Antioxidant Capacity of Maillard Compounds Present in Bread Crust: Studies in Caco-2 Cells. Foods, 6(1), 5. https://doi.org/10.3390/foods6010005

Ismail, N. I., Kadir, M. R. A., Zulkifli, R. M., & Mohamed, M. (2021). Comparison Of Physicochemical, Total Protein And Antioxidant Profiles Between Malaysian Apis And Trigona Honeys. Malaysian Journal of Analytical Sciences, 25(2), 243–256.

Jeong, S.-M., Kim, S.-Y., Kim, D.-R., Jo, S.-C., Nam, K. C., Ahn, D. U., & Lee, S.-C. (2004). Effect of Heat Treatment on the Antioxidant Activity of Extracts from Citrus Peels. Journal of Agricultural and Food Chemistry, 52(11), 3389–3393. https://doi.org/10.1021/jf049899k

Khan, M. K., Paniwnyk, L., & Hassan, S. (2019). Polyphenols as Natural Antioxidants: Sources, Extraction and Applications in Food, Cosmetics and Drugs. In Plant Based Green Chemistry 2.0 (pp. 197–235). https://doi.org/10.1007/978-981-13-3810-6_8

Kumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/162750

Kundu, T., & Pramanik, A. (2020). Expeditious and eco-friendly synthesis of new multifunctionalized pyrrole derivatives and evaluation of their antioxidant property. Bioorganic Chemistry, 98, 103734. https://doi.org/10.1016/j.bioorg.2020.103734

Lamerkabel, J. (2011). Mengenal Jenis-Jenis Lebah Madu, Produk-Produk dan Cara Budidaya. LOGIKA: Jurnal Ilmu Pengetahuan Dan Teknologi, 9(1), 70–78.

Liang, N., & Kitts, D. (2014). Antioxidant Property of Coffee Components: Assessment of Methods that Define Mechanisms of Action. Molecules, 19(11), 19180–19208. https://doi.org/10.3390/molecules191119180

Nayik, G. A., & Nanda, V. (2016). Effect of thermal treatment and pH on antioxidant activity of saffron honey using response surface methodology. Journal of Food Measurement and Characterization, 10(1), 64–70. https://doi.org/10.1007/s11694-015-9277-9

Nicoli, M. C., Anese, M., Manzocco, L., & Lerici, C. R. (1997). Antioxidant Properties of Coffee Brews in Relation to the Roasting Degree. LWT - Food Science and Technology, 30(3), 292–297. https://doi.org/10.1006/fstl.1996.0181

Noda, K., Terasawa, N., & Murata, M. (2016). Formation scheme and antioxidant activity of a novel Maillard pigment, pyrrolothiazolate, formed from cysteine and glucose. Food & Function, 7(6), 2551–2556. https://doi.org/10.1039/C5FO01625H

Nugraha, A. T., Sumarlin, L. O., Muawanah, A., Amilia, N., & Wulandari, M. (2022). The Total Phenolic, Total Flavonoid, And Brown Pigment In Honey Before And After Heating. Elkawnie: Journal of Islamic Science and Technology, 8(1), 190–208.

Rufián-Henares, J. A., & Morales, F. J. (2007). Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Research International, 40(8), 995–1002. https://doi.org/10.1016/j.foodres.2007.05.002

Šaric, G., Markovic, K., Vukicevic, D., Lez, E., Hruskar, M., & Vahcic, N. (2013). Changes of antioxidant activity in honey after heat treatment. Czech Journal of Food Sciences, 31(6), 601–606. https://doi.org/10.17221/509/2012-CJFS

Shamsudin, S., Selamat, J., Sanny, M., Bahari, S., Jambari, N. N., & Khatib, A. (2019). A Comparative Characterization of Physicochemical and Antioxidants Properties of Processed Heterotrigona itama Honey from Different Origins and Classification by Chemometrics Analysis. Molecules, 24(21), 3898. https://doi.org/10.3390/molecules24213898

Sumarlin, L. O., Muawanah, A., Wardhani, P., & Masitoh. (2014). Anticancer and Antioxidant Activity of Honey in the Market Local Indonesia. Jurnal Ilmu Pertanian Indonesia, 19(3), 136–144.

Sumarlin, L. O., Tjachja, A., Octavia, R., & Ernita, N. (2018). Aktivitas Antioksidan Ekstrak Metanol Madu Cair d an Madu Bubuk Lokal Indonesia. Al - Kimia, 6(1), 10–23.

Tosi, E. A., Ré, E., Lucero, H., & Bulacio, L. (2004). Effect of honey high-temperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. LWT - Food Science and Technology, 37(6), 669–678. https://doi.org/10.1016/j.lwt.2004.02.005

Turkmen, N., Sari, F., Poyrazoglu, E. S., & Velioglu, Y. S. (2006). Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry, 95(4), 653–657. https://doi.org/10.1016/j.foodchem.2005.02.004

Yanagimoto, K., Lee, K.-G., Ochi, H., & Shibamoto, T. (2002). Antioxidative activity of heterocyclic compounds formed in Maillard reaction products. International Congress Series, 1245, 335–340. https://doi.org/10.1016/S0531-5131(02)01007-5


Full Text: PDF

DOI: 10.30595/jrst.v7i2.16855

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2549-9750