Evaluasi Motor Listrik Sebagai Penggerak Mobil Listrik

Authors

  • Angga Wahyu Aditya <span style="font-size: small;">Politeknik Negeri Balikpapan</span>
  • Ihsan Ihsan <span style="font-size: small;">Politeknik Negeri Balikpapan</span>
  • Restu Mukti Utomo <span style="font-size: small;">Politeknik Negeri Balikpapan</span>
  • Hilmansyah Hilmansyah <span style="font-size: small;">Politeknik Negeri Balikpapan</span>

DOI:

https://doi.org/10.30595/jrst.v3i2.4424

Keywords:

Motor listrik, motor induksi, mobil listrik, emisi nol

Abstract

Pengembangan konsep kendaraan Low-Cost Green Car (LCGC) dan zero emission menjadi fokus penelitian pada beberapa negara. Hal ini dilatarbelakangi cadangan bahan bakar minyak yang terus menurun dan bahaya pencemaran lingkungan. Motor listrik merupakan satu – satunya penggerak utama yang dapat diaplikasikan pada mobil listrik yang mengusung kedua konsep tersebut. Pada generasi awal pengembangan mobil listrik, motor DC menjadi solusi yang paling sesuai dikarenakan kemudahan pengoperasiannya dan pengaturan kecepatannya. Setelah teknologi kontrol vektor untuk motor induksi ditemukan dan dikembangkan, motor induksi mulai dipakai oleh beberapa pabrikan mobil listrik. Pada kontrol vektor, fluks dan torsi pada motor induksi dapat dikendalikan secara terpisah sehingga pengaturan motor induksi menyerupai motor DC. PMSM merupakan satu – satunya jenis motor listrik yang mampu menyamai motor induksi sebagai penggerak mobil listrik. Namun, PMSM memiliki kekurangan yang sangat vital yaitu mudah mengalami kerusakan magnetisasi akibat panas atau reaksi armature, sehingga diperlukan penelitian lebih lanjut untuk mengaplikasikan PMSM pada mobi listrik. Motor listrik jenis SRM banyak digunakan pada mobil hybrid yang memadukan penggunaan mesin berbahan bakar minyak dengan motor listrik. SRM memiliki banyak kekurangan apabila diaplikasikan pada mobil listrik berskala kecil namun sangat sesuai untuk diaplikasikan pada mobil listrik berskala besar seperti bis.

References

Assegaf, A., Purwadi, A., Rachmilda, T. D., & Haroen, Y. (2013). Dynamic Response Analysis of Permanent Magnet Brushless DC Motor Drives for City Electric Car Based on Matlab / Simulink. 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T). Bandung - Bali.

Bitar, Z., & Jabi, S. A. (2014). Studying the Performances of Induction Motor Used in Electric Car. The International Conferences on Technologies and Materials for Renewable Energy, Environment and Sustainability. Beirut.

BPPT. (2018). OUTLOOK INDONESIA ENERGY 2018 : Energi Berkelanjutan untuk Transportasi Darat. Jakarta: Pusat Pengkajian Industri dan Proses Energi (PPIPE) - Badan Pengkajian dan Penerapan Teknolog (BPPT).

Eisler, M. N. (2016). A Tesla in Every Garage? IEEE SPECTRUM, 53(2), 34 - 55.

Fard, S. M., Khajepour, A., Goodarzi, A., & Esmailzadeh, E. (2012). Design and control of a narrow electric vehicle. International Electric Vehicle Conference. Greenville.

Hashernnia, N., & Asaei, B. (2008). Comparative Study of Using Different Electric Motors in the Electric Vehicles. International Conference on Electrical Machines (pp. 1-5). Vilamoura: IEEE.

Hashernnia, N., & Asaei, B. (2008). Comparative Study of Using Different Electric Motors in the Electric Vehicles. International Conference on Electrical Machines. Vilamoura.

Jaya, A., Purwanto, E., Fauziah, M. B., Murdianto, F. D., Prabowo, G., & Rusli, M. R. (2017). Design of PID-Fuzzy for Speed Control of Brushless DC Motor in Dynamic Electric Vehicle to Improve Steady-State Performance. International Electronics Symposium on Engineering Technology and Applications (IES-ETA) (pp. 179 - 184). Surabaya: IEEE.

K, N. G., Ushakumari, & V., L. Z. (2012). Harmonic Elimination of Space Vector Modulated Three Phase Inverter . International MultiConference of Engineers and Computer Scientists. Hong Kong.

Kiyota, K., Kakishima, T., Sugimoto, H., & Chiba, A. (2013). Comparison of the Test Result and 3D-FEM Analysis at the Knee Point of a 60 kWSRM for a HEV. IEEE TRANSACTIONS ON MAGNETICS, 49(5), 2291 - 2294.

Kumar, S., & D.Susitra. (2016). A SRM Drive Based Hybrid Electric Vehicle with Reduced Switch Converter. International Conference on Green Engineering and Technologies (IC-GET). Coimbatore.

Mehazzem, F., Nemmour, A. L., & Reama, A. (2017). Real time implementation of backstepping-multiscalar control to induction motor fed by voltage source inverter. International Journal of Hydrogen Energy, 42(28), 17965 - 17975.

Oliveira, C. M., Aguiar, M. L., Monteiro, J. B., & Pereira, W. C. (2015). Vector Control of Induction Motor using a Sliding Mode Controller with Chattering Reduction. IEEE Brazillian Electronics Conferrence and 1st Southern Power Electronics Conferrence (COBEP/SPEC). Fortaleza.

Quang, N. P., & Dittrich, J.-A. (2015). Vector Control of Three-Phase AC Machines. Berlin: Springer-Verlag Berlin Heidelberg.

Saleki, A., Rezazade, S., & Changizian, M. (2017). Analysis and Simulation of Hybrid Electric Vehicles for Sedan Vehicle. Iranian Conference on Electrical Engineering. Tehran.

Sieklucki, G. (2018). An Investigation into the Induction Motor of Tesla Model S Vehicle. International Symposium on Electrical Machines (SME). Andrychów.

Sriwilai, A., Pattaraprakorn, W., Chutiprapat, V., Sansilah, C., & Bhasaputra, P. (2016). The Study on the Effect of Electric Car to Energy Consumption in Thailand. 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Chiang Mai: IEEE.

Thomas, S., & Koshy, R. A. (2013). Efficiency Optimization with Improved Transient Performance of Indirect Vector Controlled Induction Motor Drive. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(1), 374 - 385.

Wang, S., Zhan, Q., Ma, Z., & Zhou, L. (2005). Implementation of a 50-kW Four-Phase Switched Reluctance Motor Drive System for Hybrid Electric Vehicle. IEEE TRANSACTIONS ON MAGNETICS, 41(1), 501 - 504.

Yaich, M., Hachicha, M. R., & Ghariani, M. (2015). Modeling and Simulation of Electric and Hybrid Vehicles for Recreational Vehicle. International conference on Sciences and Techniques of Automatic control & computer engineering - STA. Monastir.

Yang, Z., Shang, F., Brown, I. P., & Krishnamurthy, M. (2015). Comparative Study of Interior Permanent Magnet, Induction and Switched reluctance Motor Drives for EV and HEV Applications. IEEE Transactions on Transportation Electrification, 245 - 254.

Zeraoulia, M., Benbouzid, M. E., & Diallo, D. (2006). Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study. IEEE Transactions on Vehicular Technology, 55(6), 1756 - 1764.

Downloads

Published

2019-09-30

How to Cite

Aditya, A. W., Ihsan, I., Utomo, R. M., & Hilmansyah, H. (2019). Evaluasi Motor Listrik Sebagai Penggerak Mobil Listrik. JRST (Jurnal Riset Sains Dan Teknologi), 3(2), 55–59. https://doi.org/10.30595/jrst.v3i2.4424