
JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70 61

Comparative Analysis of CNN Architectures for

SIBI Image Classification

Yulrio Brianorman1*, Dewi Utami2

1Informatics Engineering, Univeristy of Muhammadiyah Pontianak, Indonesia
2Communication Science, University of Tanjungpura, Indonesia

*corr_author: y.brianorman@unmuhpnk.ac.id

Abstract - The classification of images from the Indonesian

Sign Language System (SIBI) using VGG16, ResNet50,

Inception, Xception, and MobileNetV2 Convolutional

Neural Network (CNN) architectures is evaluated in this

paper. With Google Colab Pro, a 224 × 224-pixel picture

dataset was used for the study. A five-stage technique

consisting of Dataset Collection, Dataset Preprocessing,

Model Design, Model Training, and Model Testing was

applied. Performance evaluation focused on accuracy,

precision, recall, and F1-Score. The results identified

VGG16 as the top-performing model with an accuracy of

99.60% and an equivalent F1-Score, followed closely by

ResNet50 with nearly similar performance. Inception,

XCeption, and MobileNetV2 demonstrated balanced

performance but with lower accuracy. This study sheds

light on the best CNN models to choose for SIBI image

classification, and it makes recommendations for further

research that include using sophisticated data

augmentation methods, investigating novel CNN

architectures, and putting the models to practical use.

Keywords: sign language, pre-trained model, CNN,

MnetV2, VGG16, ResNet50, xception,

inception

I. INTRODUCTION

Human communication has changed over the ages,

taking on diverse forms and techniques. A key element

of this progression has been the employment of body

language and complementing words, which can

occasionally function as the main means of

communication. This is especially important for deaf

people, whose primary language is signing language,

which consists of hand motions, body gestures, and

facial expressions. Sign language is a rich and complex

system with many emotional and contextual nuances

inherent in each movement and expression.

Comprehending and analyzing these motions offers a

valuable understanding of how the deaf community

engages and perceives its surroundings.

American Sign Language (ASL) is not limited to the

US; it is widely used worldwide. Notably, the Indonesian

Sign Language System (SIBI) has adopted several

elements from ASL, particularly in terms of representing

letters and numbers. The deaf community in Indonesia

utilizes techniques derived from ASL when using SIBI

to express the Latin alphabet letters from 'A' to 'Z' and

numbers from '0' to '9'. This enables speakers of ASL and

SIBI to spell out words manually, letter by letter, which

proves highly useful. Sign language is flexible and rich

in adapting elements of written language, as evidenced

by the implementation of handshapes in both ASL and

SIBI. This adoption highlights the global significance of

ASL and how it aids the unique communication needs of

the deaf community in many countries, including

Indonesia.
The focus of this research is on the sign language

found within the Indonesian Sign Language System

(SIBI). A thorough understanding of letters and numbers

in this sign system is crucial because many deaf

communities in Indonesia are still underexposed to the

representation of the Latin alphabet in SIBI, which is

essential for their daily lives. The ability to express each

letter and number clearly and accurately in SIBI is vital

for the Indonesian deaf community, as they rely on SIBI

hand movements to communicate the same information.

This ability is akin to the capability of hearing

individuals to comprehend sounds.

ConvNets, also known as Convolutional Neural

Networks (CNN), are an effective machine-learning

method for image processing. CNNs are better than

regular neural networks because they are ideal for

applications like image recognition since they can

automatically and adaptively learn the spatial features of

images. The convolutional layers, which perform feature

extraction, are at the heart of CNN architecture. These

layers can detect features such as edges, textures, and

shapes in images. After the features are extracted, the

results are usually processed through one or more fully

connected layers. This process, often referred to as a

multilayer perceptron, functions to classify or make

decisions based on the extracted features [1]. With these

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

62 Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70

capabilities, CNNs are now the standard for many deep-

learning applications, especially those related to

computer vision and image processing.

The utilization of artificial neural networks (ANN)

for identifying finger alphabets in Sign Language was

the subject of Rozani's research [2]. This application

achieved an accuracy of 77.08% in identifying finger

alphabets using the backpropagation method. Its

strengths include the ability to recognize more than one

alphabet in a single test and adapt to images taken from

various distances. However, a limitation of this study is

that it did not detail the CNN architecture used in the

training for sign language recognition.

The research focus of Bagus et al. was on the

recognition of numerical signs in SIBI (Sistem Isyarat

Bahasa Indonesia) using a Convolutional Neural

Network (CNN) [3]. This study involved a three-stage

processing method, with epochs set at 25, 50, and 100.

The results showed a significant increase in accuracy,

reaching a peak of 96.44% in training and 98.89% in data

prediction. These outcomes indicate that the CNN

method is highly effective in recognizing SIBI numerical

signs with a very low error rate. However, a limitation of

this study is that it only focused on the recognition of

numbers from 0 to 9.

Yolanda, Gunadi, and Setyati conducted additional

research on the recognition of hand sign language,

specifically the alphabet, commonly used by people with

disabilities [4]. While there has been progress in

processing static sign language images, challenges

persist in processing dynamic images or videos. In their

study, they employed Convolutional Neural Network

(CNN) and Recurrent Neural Network (RNN) with video

inputs. The CNN extracted spatial features, while the

RNN correlated the frames extracted by the CNN over

time. The results were displayed as a text representing

the alphabet derived from the recognized sign language.

Due to limitations in the supporting system for the

developed architecture, real-time testing was

unsuccessful, with an average accuracy of 60.58% for

full letters.

Perdana, Putra, and Dharmadi. researched

recognizing sign language, particularly numbers in

American Sign Language (ASL), using a machine

learning system [5]. This study developed a system that

utilizes preprocessing methods to optimize results,

addressing the common difficulty many people face in

learning sign language. The research employed a

Convolutional Neural Network (CNN) architecture with

MobileNetV2. The results showed that the combination

of preprocessing methods like Grayscale, HSV, and

Global Threshold achieved the best recognition accuracy

of 97%, indicating that the system is effective in

understanding and classifying ASL sign language. The

study is limited, though, because the information utilized

in it only contains the 26 letters of the SIBI alphabet; it

excludes digits 0 through 9.

Sholawati, Auliasari, and Ariwibisono utilized the

Convolutional Neural Network (CNN) method to

classify sign language demonstrations recorded in real-

time by teachers and students [6]. The dataset included

416 digital images, encompassing images of the active

movements of the J and Z sign language alphabets. The

system developed in this study displayed class labels and

probability values of classification results on a website

through a webcam interface. The testing, involving two

participants, yielded accuracy, recall, specificity, and

sensitivity values of 80.76% based on the confusion

matrix formula. One limitation of this research was that

the architecture used was a proprietary creation of the

researchers, meaning its generalizability has not yet been

tested.

In their research, Fadhilah and Marpaung employed

the Convolutional Neural Network (CNN) method,

known for its effectiveness in deep learning for image

recognition, to develop a learning medium for

recognizing the SIBI alphabet [7]. The dataset used

consisted of 2,600 images, divided into 20% for

validation and 80% for training. After conducting ten

experiments and comparing various parameters such as

batch size and number of epochs, it was found that the

best accuracy reached 85%. This result confirms the

effectiveness of CNN in recognizing the SIBI alphabet.

The study is limited, though, because the information

utilized in it only contains the 26 letters of the SIBI

alphabet; it excludes numbers 0 through 9.

Naufal and Kusuma compared the algorithms K-

Nearest Neighbors (KNN), Support Vector Machine

(SVM), and Convolutional Neural Network (CNN) with

transfer learning [8]. The study utilized transfer learning

algorithms such as Xception, ResNet50, VGG15, and

MobileNetV2. The results showed that the CNN with the

Xception architecture achieved the highest F1 score of

99.57% with an average training time of 1,387 seconds.

Meanwhile, KNN with K = 1 had the fastest training

speed, with a training time of only 0.03 seconds, and

achieved an F1 score of 86.95%. This research offers

crucial insights into algorithm selection for SIBI image

recognition. A limitation of this study is that the pre-

trained architectures did not use hyperparameter tuning

to enhance performance. Additionally, the dataset did not

include sign language numbers. Other related research

on the use of CNN for classification beyond SIBI images

includes the classification of Batik Garutan images [9],

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70 63

the recognition of images for improving the early

warning system for tsunamis in Indonesia [10], and the

identification of fashion images [11].

In this study, the main problem formulated involves

assessing the effectiveness of various pre-trained

Convolutional Neural Networks (CNN) architectures

such as Inception, MobileNetV2, VGG16, and Xception

in classifying images of the Indonesian Sign Language

System (SIBI), which includes the alphabet from A to Z

and numbers from 0 to 9. This includes investigating the

relationship between training duration and classification

effectiveness, as well as comparing the training time

required by each CNN architecture on the SIBI dataset.

Furthermore, this research aims to evaluate and compare

performance metrics such as accuracy, precision, recall,

and F1-Score for each model to determine their relative

performance in the SIBI image classification task,

thereby indicating which model is most suitable for this

application.
The research methodology employed includes dataset

collection, dataset pre-processing, training of

classification models with hyperparameter adjustments,

testing of classification models, and calculation of

classification performance. This method is expected to

enhance understanding of the effectiveness of different

network architectures in classifying SIBI (Sistem Isyarat

Bahasa Indonesia) images. The benefit of this research is

anticipated to significantly improve comprehension of

the effectiveness of various network architectures in

classifying SIBI images, providing crucial insights that

can be used to optimize applications and the

development of image pattern recognition technologies

in the future.

II. METHOD

In this study, four key research steps were executed.

The first step involved the collection of the dataset. This

was followed by the training of the classification model.

Next, the trained classification model was tested. The

final step entailed evaluating the classification

performance. This performance evaluation also included

a comparison of the performance across various

algorithms. Fig. 1 illustrates the sequence of these

research steps, which were followed systematically.

A. Dataset Collection

The SIBI image dataset used in this research was

obtained from a public dataset source on Kaggle

(https://bit.ly/3trwIlH). The decision to use this dataset

was based on its open availability and accessibility to

other researchers. Utilizing a public dataset facilitates

comparisons with other methods that may be proposed

by researchers in the future. This dataset comprises 36

classes representing the alphabet letters A to Z and

numbers 0 to 9. Each class contains 70 images, except

for the letter “T,” which has 65 images, resulting in a

total of 2515 images used in the study. Examples of

images for each class are presented in Fig. 2.

Fig. 1. The flow of the research methodology in this study

Fig. 2 Image of SIBI alphabets and numbers

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

64 Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70

B. Dataset Preprocessing

The resolution of the captured images in the study

was initially set at 400x400 pixels. Subsequently, these

images were resized to 224x224 pixels to align with the

input size requirements of the pre-trained models to be

used in the research. This resizing is a crucial step to

ensure compatibility with the chosen models. The image

data was stored in the form of numpy arrays, which

facilitates the learning process by eliminating the need

for additional conversion from images to numpy arrays

during training. The extension of these files is *.npy,

indicating their numpy array format. The files can be

accessed through the following link:

https://bit.ly/citraSIBI.

C. Model Design

At this stage, each algorithm is configured with

specific parameters, aiming to evaluate the impact of

these parameters on classification performance. In the

CNN algorithm, the parameters tested include the

number of epochs, types of convolutional layers, types of

activation functions, and the number of dense layers.

Additionally, CNN utilizes transfer learning

architectures such as InceptionV3, MobileNetV2,

ResNet50, VGG16, and Xception. This approach helps

in understanding how different settings and architectures

influence the overall effectiveness of the model in

classifying images.

InceptionV3, an evolution of the earlier Inception

model, is designed to enhance image recognition

accuracy and reduce overfitting. This model incorporates

improvements such as the use of auxiliary classifiers,

convolution factorization, and label smoothing

regularization. With these features, InceptionV3

becomes more efficient and flexible in handling complex

image recognition tasks [12].

MobileNetV2 enhances the performance of mobile

architectures across various tasks and benchmarks. This

architecture employs inverted residual blocks and linear

bottlenecks, enabling higher memory efficiency, crucial

for mobile applications. Techniques such as 1x1

convolutions, inverted residual blocks, batch

normalization, and residual connections improve

gradient propagation capabilities and reduce memory

requirements [13].

ResNet50 is a 50-layer Convolutional Neural

Network (CNN) that utilizes residual blocks, enabling

the addition of more convolutional layers without

encountering the problem of vanishing gradients, thanks

to the use of shortcut connections. These connections

"skip" some layers, transforming a regular network into

a residual network [14]. Despite ResNet50's large

number of parameters, it has a simpler architecture

compared to VGGNet. It remains effective with fewer

filters and reduced complexity, making it faster in

training.

The VGG16 model is a Convolutional Neural

Network (CNN) that supports 16 layers. It is designed to

replace large filters with a sequence of smaller 3x3

filters, enhancing non-linear activation functions and

allowing the network to converge quickly. VGG16

utilizes these smaller convolutional filters to reduce the

tendency towards overfitting during training, making it

the smallest model capable of understanding the spatial

features of images [15].

Xception is a convolutional neural network

architecture that fully relies on depthwise separable

convolution layers. It represents an enhancement of the

Inception architecture, modifying depthwise separable

convolutions for improved performance. Xception posits

that the mapping of cross-channel correlations and

spatial correlations within the feature maps of

convolutional neural networks can be entirely decoupled.

Comprising 36 convolutional layers structured into 14

modules, all equipped with linear residual connections

around them, the Xception architecture offers a simpler

and more efficient approach compared to Inception V3.

This efficiency is particularly evident in terms of the

number of parameters and training performance [16].

The transfer learning technique employed involves

omitting the output part of each architecture.

Subsequently, this output section is replaced with an

output layer consisting of 36 neurons used for the

classification process, employing softmax activation. An

illustration of the CNN architecture design using pre-

trained ImageNet models is depicted in Fig. 3.

Fig. 3 The design of an architecture for classifying letters

and numbers using pre-trained models

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70 65

Fig. 4 illustrates a comparison of the number of

parameters among five different CNN architectures:

VGG16, InceptionV3, MobileNetV2, ResNet50, and

Xception. From the graph, it is evident that VGG16 has

the lowest number of parameters, 903,204, indicating a

relative simplicity in its architecture. This suggests

potential for faster training and lighter implementation,

though it may come with limitations in accuracy or the

ability to learn complex features. Conversely, Xception

and ResNet50, each with 3,612,708 parameters, indicate

higher complexity, often associated with better

capability to learn detailed data features, potentially

leading to higher accuracy. InceptionV3 and

MobileNetV2, with parameter counts in between, offer a

balance between complexity and efficiency. However,

the number of parameters is not the sole determinant of

model performance, as factors like data quality, specific

architecture, training methods, as well as memory and

computational time requirements, also play crucial roles.

D. Training Model

At this stage, all the image data used have a size of

224x224, consistent with the dimensions set during the

collection of image data. The total image data consists of

2,515 images, which include 26 signals representing

letters and 10 signals for numbers. All images trained in

this study are 224x224 pixels in size, in line with the

dimensions established when the image data was

collected. The total number of images available is 2,515,

comprising 26 signals for letters and 10 signals for

numbers.

Next, the image data is divided into three categories:

training data, validation data, and test data. This division

process is done in two steps: first, all data is randomized,

and then divided with a proportion of 80% for training

data, 10% for validation data, and the remaining 10% for

test data. The details of this data division can be seen in

TABLE I.

Fig. 4 Graph of the total number of parameters used in

each pre-trained model

TABLE I

DIVISION OF TRAINING DATA, VALIDATION DATA,

AND TEST DATA

Data Percentage Amount

Training Data 80% 2012

Validation Data 10% 251

Test Data 10% 252

The hyperparameter configuration for the CNN

architecture can be seen in

 True/Actual Class

 Positive(P) Negative(N)

Predicted

Class

True

(T)

True Positive

(TP)

False Positive

(FP)

False

(F)

False Negative

(FN)

True Negative

(TN)

 P=TP+FN N=FP+TN

Fig. 5 Confusion matrix

TABLE II. During the training process, the

hyperparameters are adjusted as follows: the use of the

Adam optimizer, a learning rate set at 0.001, the loss

function utilizing categorical loss, training carried out for

30 epochs, and a batch size set to 32. Additionally, the

learning process will be halted if there is no improvement

in accuracy over 5 consecutive epochs. This is indicated

by a hyperparameter of patience = 5.

E. Testing Model

The testing process conducted using the image data

of SIBI letter and number signs aims to evaluate the

classification performance at each stage, including

training, validation, and testing. The performance of

each stage will be measured using various metrics,

including precision (1), recall (2), accuracy (3), and F1-

Score (4). These metrics provide a comprehensive

overview of the model's effectiveness in accurately

classifying data. This testing will be consistently applied

to each pre-trained CNN architecture used in this

research, ensuring that each architecture can be

evaluated and compared based on the same criteria.

Thus, it will be possible to determine which architecture

is most effective in recognizing and processing SIBI

letter and number sign images. The confusion matrix was

illustrated in Fig. 5.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3)

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙
 (4)

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

66 Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70

 True/Actual Class

 Positive(P) Negative(N)

Predicted

Class

True

(T)

True Positive

(TP)

False Positive

(FP)

False

(F)

False Negative

(FN)

True Negative

(TN)

 P=TP+FN N=FP+TN

Fig. 5 Confusion matrix

TABLE II

CNN ARCHITECTURE HYPERPARAMETERS

Hyperparameter Value

Optimizer Adam

Learning Rate 0,001

Loss function Categorical Cross Entropy

Epoch 30

Batch size 32

Patience 5

Fig. 5 explains the four main variables: TP, FP, FN,

and TN, and visualizes four possible prediction

scenarios. In the image, white boxes represent accurate

predictions, while gray boxes indicate inaccurate

predictions. The True Positive (TP) variable indicates a

match between a correct prediction and a true reality.

Conversely, True Negative (TN) indicates a match

between a wrong prediction and a false reality.

Meanwhile, a False Positive (FP) represents a situation

where the prediction indicates something as true when it

is false. Finally, False Negative (FN) refers to cases

where the prediction indicates something as false when

it is true.

III. RESULT AND DISCUSSION

This section will focus on two crucial aspects: the

discussion of results from training and validation, and the

evaluation of testing outcomes. The training and

validation process is essential for measuring the model's

effectiveness in understanding data, while testing

provides insights into the model's performance with new

data. This research utilizes Google Colab Pro as the

primary platform for training and testing, at a rental cost

of $11.09 per month, allowing access to high computing

resources. This ensures that the research is conducted

with adequate resources, optimizing the performance and

efficiency of the tested models.

A. Training and Validation Results

The training process was conducted using the concept

of transfer learning from each pre-trained CNN model,

namely MnetV2, VGG16, ResNet50, and Xception. This

training was carried out for 100 epochs with

hyperparameters as shown in Table II. However, the

training would be stopped if there was no improvement

in accuracy over 5 consecutive epochs. Fig. 6 shows the

training results for each model used in this study.

The analysis of the performance of different pre-

trained Convolutional Neural Networks (CNN) models

reveals intriguing results. The VGG16 model, with a

training accuracy of 99.60% and validation accuracy of

98.41% in just five epochs, demonstrates an exceptional

ability to generalize learning from training data to

validation data. The Inception model indicates that

improvements in training strategies or architectural

adjustments are needed to enhance efficiency and

effectiveness. With a training accuracy of 100.00% in 12

epochs, MobileNetV2 achieved a validation accuracy of

95.62%, suggesting the potential for overfitting, which

warrants further investigation. ResNet50, with 99.40%

training accuracy and 97.21% validation accuracy over

26 epochs, showcases consistent and reliable

performance, indicating its capability to balance learning

and generalization. Lastly, XCeption also achieved

perfect training accuracy at 100.00%, but its validation

accuracy of 96.81% in 16 epochs suggests a possibility

of overfitting.

Overall, these findings emphasize the importance of

measuring both training accuracy and validation

performance to assess a model's generalization ability.

While MobileNetV2 and XCeption require more careful

handling to address overfitting issues, models like

VGG16 and ResNet50 strike a good balance between

learning and generalization. By evaluating accuracy,

training efficiency, and generalization capability, this

research provides critical insights on how to best select

CNN architectures for specific image classification

applications. The complete training and validation

results are presented in TABLE III.

TABLE III

TRAINING ACCURACY AND VALIDATION RESULTS

Pre-trained Model Accuracy Validation Epoch

VGG16 0.9960 0.9841 5

Inception 0.9051 0.9124 28

MobileNetV2 1.0000 0.9562 12

ResNet50 0.9940 0.9721 26

XCeption 1.0000 0.9681 16

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70 67

a. Model VGG16

b. Model Inception

c. Model ModelNetV2

d. Model ResNet50

e. Model Xception

Fig. 6 Graph of training results for each pre-trained

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

68 Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70

The significance of selecting an appropriate CNN

architecture for SIBI image classification is shown by the

training and validation outcomes. The high accuracy of

models like VGG16 and ResNet50 can be attributed to

their architectural strengths—VGG16's deep layers

effectively capture detailed visual features, while

ResNet50's residual connections facilitate deeper

learning without gradient vanishing, crucial for the

nuanced differentiation required in sign language

images. This analysis not only aligns with our research

objectives but also highlights the effectiveness of

specific network architectures in addressing the

challenges of SIBI image classification, paving the way

for future advancements in the field.

B. Test Results

If validation data is used as a performance check

during the training process and is consistently observed

at each epoch, then test data represents data that the pre-

trained model has never seen during the training process.

In other words, this data can be used as a benchmark for

the actual implementation of the system. A model's

training outcome might perform well in experiments, but

it may not show good accuracy on data it has never seen

during the training process. This underscores the

importance of testing a model using test data. The

division of the dataset is illustrated in TABLE IV.

TABLE IV

TEST ACCURACY RESULTS

Pre-Trained

Model

Accuracy Precision Recall F1-Score

VGG16 0.9960 0.9965 0.9960 0.9960

Inception 0.8769 0.9125 0.8769 0.8827

MobileNetV2 0.9880 0.9894 0.9880 0.9880

ResNet50 0.9880 0.9896 0.9880 0.9880

XCeption 0.9523 0.9592 0.9523 0.9526

The testing results using test data reveal significant

performance differences among various pre-trained

Convolutional Neural Networks (CNN) models. One of

the best-performing models, VGG16 (Fig. 7), shows

exceptional performance; it achieved an accuracy of

87.69% and an almost perfect F1-Score of 88.27%,

indicating VGG16's highly effective capability in

classifying test data with high accuracy. In contrast, the

Inception model exhibits lower performance, with an

accuracy of 87.69% and an almost perfect F1-Score, all

above 99%. These results suggest that, compared to other

models, Inception may be less effective in generalizing

learning to test data. Meanwhile, MobileNetV2 and

ResNet50 demonstrate impressive and nearly identical

results, with accuracy, precision, recall, and F1-Scores

around 98.80%, indicating high reliability in classifying

test data. Lastly, XCeption, with an accuracy of 95.23%

and an F1-Score of 95.26%, shows solid performance but

is slightly below the standard set by MobileNetV2 and

ResNet50. In conclusion, while each model has its

strengths, VGG16 and ResNet50 emerge as highly

effective choices for applications requiring high

accuracy and consistency in image classification.

The VGG16 architecture is a prominent deep

convolutional neural network that is both deep and

straightforward in design, consisting of thirteen

convolutional layers that use 3x3 filters, the smallest

practical size for capturing image features such as

patterns, edges, colors, and textures. It processes input

images of 224x224 pixels resolution through these

convolutional layers, each followed by a ReLU

activation function to add non-linearity. The network

employs 2x2 max pooling layers to reduce spatial

dimensions between convolutions. It concludes with

three densely connected layers, boasting 4096, 4096, and

1000 neurons respectively, leading to a softmax output

layer that classifies images into 1000 categories, which

is typical for ImageNet competition tasks. This design

has positioned VGG16 as a powerful tool for feature

extraction and image classification.

Fig. 7 VGG16 architecture

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70 69

Moreover, the VGG16 model's success in various

applications can be attributed to its ability to generalize

well from large pre-trained datasets like ImageNet to

specific tasks with limited data availability. This transfer

learning potential is particularly beneficial in fields like

sign language recognition and medical image analysis

where collecting annotated datasets is challenging.

VGG16's adaptability and resilience as a feature

extractor are highlighted by its efficacy in diverse fields,

including dementia severity assessment, cancer

prediction, and bone anomaly identification. Such

achievements are documented in studies like "Bone

Abnormalities Detection and Classification Using Deep

Learning-Vgg16 Algorithm" [17] and "VGG16 Feature

Extractor with Extreme Gradient Boost Classifier for

Pancreas Cancer Prediction," [18] underscoring the

model's broad applicability and exceptional performance

in image classification tasks.

IV. CONCLUSION

The testing results across various Convolutional

Neural Networks (CNN) architectures indicate that

VGG16 and ResNet50 stand out in evaluating different

CNN models. VGG16 excels with nearly perfect

accuracy (99.60%) and similar scores in precision, recall,

and F1-Score, demonstrating its exceptional ability to

classify data with high precision. In contrast, ResNet50

also shows strong performance with accuracy, precision,

recall, and F1-Score around 98.80%, indicating its

effectiveness in classifying data accurately and

effectively. Both models exhibit high suitability for

applications that require high levels of accuracy and

consistency. Meanwhile, XCeption and Inception offer

balanced performances, with XCeption recording

accuracy and F1 Scores above 95%, and Inception

showing potential for improvement. MobileNetV2,

despite its high accuracy and recall, has a lower F1-

Score, indicating potential challenges in balancing the

identification of true positives and avoiding false

positives. In conclusion, while VGG16 and ResNet50

stand out as the best models for applications demanding

high levels of accuracy and precision, other models like

XCeption and Inception remain relevant for specific

needs, whereas MobileNetV2 requires further evaluation

in aspects of precision and recall. There are opportunities

to test new CNN architectures such as EfficientNet or

Transformer-based models, as well as to implement

more advanced methods for data augmentation and

transfer learning in future research. To combat

overfitting, it's also crucial to focus on regularization

techniques and hyperparameter optimization.

Furthermore, conducting investigations into the

interpretation and transparency of models can provide

valuable insights, especially for determining their

relevance in various practical situations.

REFERENCES

[1] Md Zahangir Alom , Tarek M. Taha , Chris Yakopcic ,

Stefan Westberg , Paheding Sidike , Mst Shamima

Nasrin ,Brian C Van Essen , Abdul A S. Awwal , and

Vijayan K. Asari, “The History Began from AlexNet:

A Comprehensive Survey on Deep Learning

Approaches,” Mar. 2018, [Online]. Available:

http://arxiv.org/abs/1803.01164

[2] A. Rozani, “Penerapan Metode Jaringan Syaraf Tiruan

Pada Aplikasi Pengenalan Bahasa Isyarat Abjad Jari,”

Jurnal Mahasiswa Teknik Informatika, vol. 1, no. 1, pp.

311–317, 2017, doi:

https://doi.org/10.36040/jati.v1i1.1897.

[3] M. Bagus, S. Bakti, and Y. M. Pranoto, “Pengenalan

Angka Sistem Isyarat Bahasa Indonesia Dengan

Menggunakan Metode Convolutional Neural Network,”

in Prosiding SEMNAS INOTEK, 2021, pp. 11–16. doi:

https://doi.org/10.29407/inotek.v3i1.504.

[4] D. Yolanda, K. Gunadi, and E. Setyati, “Pengenalan

Alfabet Bahasa Isyarat Tangan Secara Real-Time

dengan Menggunakan Metode Convolutional Neural

Network dan Recurrent Neural Network,” JURNAL

INFRA, vol. 8, no. 1, 2020.

[5] I. P. I. Perdana, I. K. G. D. Putra, A. Dharmaadi, and I.

Putu, “Classification of Sign Language Numbers Using

the CNN Method,” Jurnal Ilmiah Teknologi dan

Komputer, vol. 2, no. 3, pp. 485–493, 2021.

[6] M. Sholawati, K. Auliasari, and FX. Ariwibisono,

“Pengembangan Aplikasi Pengenalan Bahasa Isyarat

Abjad Sibi Menggunakan Metode Convolutional Neural

Network (CNN),” JATI (Jurnal Mahasiswa Teknik

Informatika), vol. 6, no. 1, pp. 134–144, Mar. 2022, doi:

10.36040/jati.v6i1.4507.

[7] Z. Fadhilah and N. L. Marpaung, “Pengenalan Alfabet

SIBI Menggunakan Convolutional Neural Network

sebagai Media Pembelajaran Bagi Masyarakat Umum,”

Jurnal Informatika: Jurnal Pengembangan IT, vol. 8,

no. 2, pp. 162–168, May 2023, doi:

10.30591/jpit.v8i2.5221.

[8] M. F. Naufal and S. F. Kusuma, “Analisis Perbandingan

Algoritma Machine Learning dan Deep Learning untuk

Klasifikasi Citra Sistem Isyarat Bahasa Indonesia

(SIBI),” Jurnal Teknologi Informasi dan Ilmu

Komputer, vol. 10, no. 4, pp. 873–882, Aug. 2023, doi:

10.25126/jtiik.20241046823.

[9] L. Tresnawati and D. B. Sukriyansah, “Image

Classification on Garutan Batik Using Convolutional

Neural Network with Data Augmentation,” Jurnal

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024

70 Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70

Informatika, vol. 11, no. 1, pp. 107–115, 2023, [Online].

Available:

www.kaggle.com/datasets/ionisiusdh/indones

[10] H. A. Nugroho, S. Hasanah, and M. Yusuf, “Seismic

Data Quality Analysis Based on Image Recognition

Using Convolutional Neural Network,” Jurnal

Informatika, vol. 10, no. 1, pp. 67–75, 2022.

[11] C. Sri, K. Aditya, V. Rahmayanti, S. Nastiti, Q. R.

Damayanti, and G. B. Sadewa, “Implementation of

Convolutional Neural Network Method in Identifying

Fashion Image,” Jurnal Informatika, vol. 11, no. 2, pp.

195–202, 2023.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z.

Wojna, “Rethinking the Inception Architecture for

Computer Vision,” in 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

IEEE, Jun. 2016, pp. 2818–2826. doi:

10.1109/CVPR.2016.308.

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-

C. Chen, “MobileNetV2: Inverted Residuals and Linear

Bottlenecks,” in 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, IEEE, Jun.

2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), IEEE, Jun. 2016, pp. 770–778.

doi: 10.1109/CVPR.2016.90.

[15] S. Liu and W. Deng, “Very deep convolutional neural

network based image classification using small training

sample size,” in 2015 3rd IAPR Asian Conference on

Pattern Recognition (ACPR), IEEE, Nov. 2015, pp.

730–734. doi: 10.1109/ACPR.2015.7486599.

[16] F. Chollet, “Xception: Deep Learning with Depthwise

Separable Convolutions,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

IEEE, Jul. 2017, pp. 1800–1807. doi:

10.1109/CVPR.2017.195.

[17] V. S. Navale, “Bone Abnormalities Detection and

Classification Using Deep Learning-Vgg16 Algorithm,”

Int J Res Appl Sci Eng Technol, vol. 11, no. 7, pp. 122–

129, Jul. 2023, doi: 10.22214/ijraset.2023.54582.

[18] W. Bakasa and S. Viriri, “VGG16 Feature Extractor

with Extreme Gradient Boost Classifier for Pancreas

Cancer Prediction,” J Imaging, vol. 9, no. 7, p. 138, Jul.

2023, doi: 10.3390/jimaging9070138.

