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Abstract - The classification of images from the Indonesian 

Sign Language System (SIBI) using VGG16, ResNet50, 

Inception, Xception, and MobileNetV2 Convolutional 

Neural Network (CNN) architectures is evaluated in this 

paper. With Google Colab Pro, a 224 × 224-pixel picture 

dataset was used for the study. A five-stage technique 

consisting of Dataset Collection, Dataset Preprocessing, 

Model Design, Model Training, and Model Testing was 

applied. Performance evaluation focused on accuracy, 

precision, recall, and F1-Score. The results identified 

VGG16 as the top-performing model with an accuracy of 

99.60% and an equivalent F1-Score, followed closely by 

ResNet50 with nearly similar performance. Inception, 

XCeption, and MobileNetV2 demonstrated balanced 

performance but with lower accuracy. This study sheds 

light on the best CNN models to choose for SIBI image 

classification, and it makes recommendations for further 

research that include using sophisticated data 

augmentation methods, investigating novel CNN 

architectures, and putting the models to practical use.  
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I. INTRODUCTION 

Human communication has changed over the ages, 

taking on diverse forms and techniques. A key element 

of this progression has been the employment of body 

language and complementing words, which can 

occasionally function as the main means of 

communication. This is especially important for deaf 

people, whose primary language is signing language, 

which consists of hand motions, body gestures, and 

facial expressions. Sign language is a rich and complex 

system with many emotional and contextual nuances 

inherent in each movement and expression. 

Comprehending and analyzing these motions offers a 

valuable understanding of how the deaf community 

engages and perceives its surroundings. 

American Sign Language (ASL) is not limited to the 

US; it is widely used worldwide. Notably, the Indonesian 

Sign Language System (SIBI) has adopted several 

elements from ASL, particularly in terms of representing 

letters and numbers. The deaf community in Indonesia 

utilizes techniques derived from ASL when using SIBI 

to express the Latin alphabet letters from 'A' to 'Z' and 

numbers from '0' to '9'. This enables speakers of ASL and 

SIBI to spell out words manually, letter by letter, which 

proves highly useful. Sign language is flexible and rich 

in adapting elements of written language, as evidenced 

by the implementation of handshapes in both ASL and 

SIBI. This adoption highlights the global significance of 

ASL and how it aids the unique communication needs of 

the deaf community in many countries, including 

Indonesia. 
The focus of this research is on the sign language 

found within the Indonesian Sign Language System 

(SIBI). A thorough understanding of letters and numbers 

in this sign system is crucial because many deaf 

communities in Indonesia are still underexposed to the 

representation of the Latin alphabet in SIBI, which is 

essential for their daily lives. The ability to express each 

letter and number clearly and accurately in SIBI is vital 

for the Indonesian deaf community, as they rely on SIBI 

hand movements to communicate the same information. 

This ability is akin to the capability of hearing 

individuals to comprehend sounds. 

ConvNets, also known as Convolutional Neural 

Networks (CNN), are an effective machine-learning 

method for image processing. CNNs are better than 

regular neural networks because they are ideal for 

applications like image recognition since they can 

automatically and adaptively learn the spatial features of 

images. The convolutional layers, which perform feature 

extraction, are at the heart of CNN architecture. These 

layers can detect features such as edges, textures, and 

shapes in images. After the features are extracted, the 

results are usually processed through one or more fully 

connected layers. This process, often referred to as a 

multilayer perceptron, functions to classify or make 

decisions based on the extracted features [1]. With these 
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capabilities, CNNs are now the standard for many deep-

learning applications, especially those related to 

computer vision and image processing.  

The utilization of artificial neural networks (ANN) 

for identifying finger alphabets in Sign Language was 

the subject of Rozani's research [2]. This application 

achieved an accuracy of 77.08% in identifying finger 

alphabets using the backpropagation method. Its 

strengths include the ability to recognize more than one 

alphabet in a single test and adapt to images taken from 

various distances. However, a limitation of this study is 

that it did not detail the CNN architecture used in the 

training for sign language recognition. 

The research focus of Bagus et al. was on the 

recognition of numerical signs in SIBI (Sistem Isyarat 

Bahasa Indonesia) using a Convolutional Neural 

Network (CNN) [3]. This study involved a three-stage 

processing method, with epochs set at 25, 50, and 100. 

The results showed a significant increase in accuracy, 

reaching a peak of 96.44% in training and 98.89% in data 

prediction. These outcomes indicate that the CNN 

method is highly effective in recognizing SIBI numerical 

signs with a very low error rate. However, a limitation of 

this study is that it only focused on the recognition of 

numbers from 0 to 9. 

Yolanda, Gunadi, and Setyati conducted additional 

research on the recognition of hand sign language, 

specifically the alphabet, commonly used by people with 

disabilities [4]. While there has been progress in 

processing static sign language images, challenges 

persist in processing dynamic images or videos. In their 

study, they employed Convolutional Neural Network 

(CNN) and Recurrent Neural Network (RNN) with video 

inputs. The CNN extracted spatial features, while the 

RNN correlated the frames extracted by the CNN over 

time. The results were displayed as a text representing 

the alphabet derived from the recognized sign language. 

Due to limitations in the supporting system for the 

developed architecture, real-time testing was 

unsuccessful, with an average accuracy of 60.58% for 

full letters. 

Perdana, Putra, and Dharmadi. researched 

recognizing sign language, particularly numbers in 

American Sign Language (ASL), using a machine 

learning system [5]. This study developed a system that 

utilizes preprocessing methods to optimize results, 

addressing the common difficulty many people face in 

learning sign language. The research employed a 

Convolutional Neural Network (CNN) architecture with 

MobileNetV2. The results showed that the combination 

of preprocessing methods like Grayscale, HSV, and 

Global Threshold achieved the best recognition accuracy 

of 97%, indicating that the system is effective in 

understanding and classifying ASL sign language. The 

study is limited, though, because the information utilized 

in it only contains the 26 letters of the SIBI alphabet; it 

excludes digits 0 through 9. 

Sholawati, Auliasari, and Ariwibisono utilized the 

Convolutional Neural Network (CNN) method to 

classify sign language demonstrations recorded in real-

time by teachers and students [6]. The dataset included 

416 digital images, encompassing images of the active 

movements of the J and Z sign language alphabets. The 

system developed in this study displayed class labels and 

probability values of classification results on a website 

through a webcam interface. The testing, involving two 

participants, yielded accuracy, recall, specificity, and 

sensitivity values of 80.76% based on the confusion 

matrix formula. One limitation of this research was that 

the architecture used was a proprietary creation of the 

researchers, meaning its generalizability has not yet been 

tested. 

In their research, Fadhilah and Marpaung employed 

the Convolutional Neural Network (CNN) method, 

known for its effectiveness in deep learning for image 

recognition, to develop a learning medium for 

recognizing the SIBI alphabet [7]. The dataset used 

consisted of 2,600 images, divided into 20% for 

validation and 80% for training. After conducting ten 

experiments and comparing various parameters such as 

batch size and number of epochs, it was found that the 

best accuracy reached 85%. This result confirms the 

effectiveness of CNN in recognizing the SIBI alphabet. 

The study is limited, though, because the information 

utilized in it only contains the 26 letters of the SIBI 

alphabet; it excludes numbers 0 through 9. 

Naufal and Kusuma compared the algorithms K-

Nearest Neighbors (KNN), Support Vector Machine 

(SVM), and Convolutional Neural Network (CNN) with 

transfer learning [8]. The study utilized transfer learning 

algorithms such as Xception, ResNet50, VGG15, and 

MobileNetV2. The results showed that the CNN with the 

Xception architecture achieved the highest F1 score of 

99.57% with an average training time of 1,387 seconds. 

Meanwhile, KNN with K = 1 had the fastest training 

speed, with a training time of only 0.03 seconds, and 

achieved an F1 score of 86.95%. This research offers 

crucial insights into algorithm selection for SIBI image 

recognition. A limitation of this study is that the pre-

trained architectures did not use hyperparameter tuning 

to enhance performance. Additionally, the dataset did not 

include sign language numbers. Other related research 

on the use of CNN for classification beyond SIBI images 

includes the classification of Batik Garutan images [9], 
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the recognition of images for improving the early 

warning system for tsunamis in Indonesia [10], and the 

identification of fashion images [11]. 

In this study, the main problem formulated involves 

assessing the effectiveness of various pre-trained 

Convolutional Neural Networks (CNN) architectures 

such as Inception, MobileNetV2, VGG16, and Xception 

in classifying images of the Indonesian Sign Language 

System (SIBI), which includes the alphabet from A to Z 

and numbers from 0 to 9. This includes investigating the 

relationship between training duration and classification 

effectiveness, as well as comparing the training time 

required by each CNN architecture on the SIBI dataset. 

Furthermore, this research aims to evaluate and compare 

performance metrics such as accuracy, precision, recall, 

and F1-Score for each model to determine their relative 

performance in the SIBI image classification task, 

thereby indicating which model is most suitable for this 

application. 
The research methodology employed includes dataset 

collection, dataset pre-processing, training of 

classification models with hyperparameter adjustments, 

testing of classification models, and calculation of 

classification performance. This method is expected to 

enhance understanding of the effectiveness of different 

network architectures in classifying SIBI (Sistem Isyarat 

Bahasa Indonesia) images. The benefit of this research is 

anticipated to significantly improve comprehension of 

the effectiveness of various network architectures in 

classifying SIBI images, providing crucial insights that 

can be used to optimize applications and the 

development of image pattern recognition technologies 

in the future. 

II. METHOD 

In this study, four key research steps were executed. 

The first step involved the collection of the dataset. This 

was followed by the training of the classification model. 

Next, the trained classification model was tested. The 

final step entailed evaluating the classification 

performance. This performance evaluation also included 

a comparison of the performance across various 

algorithms. Fig. 1 illustrates the sequence of these 

research steps, which were followed systematically. 

A. Dataset Collection 

The SIBI image dataset used in this research was 

obtained from a public dataset source on Kaggle 

(https://bit.ly/3trwIlH). The decision to use this dataset 

was based on its open availability and accessibility to 

other researchers. Utilizing a public dataset facilitates 

comparisons with other methods that may be proposed 

by researchers in the future. This dataset comprises 36 

classes representing the alphabet letters A to Z and 

numbers 0 to 9. Each class contains 70 images, except 

for the letter “T,” which has 65 images, resulting in a 

total of 2515 images used in the study. Examples of 

images for each class are presented in Fig. 2.

 

 
Fig. 1. The flow of the research methodology in this study 

  

 
Fig. 2 Image of SIBI alphabets and numbers 
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B. Dataset Preprocessing 

The resolution of the captured images in the study 

was initially set at 400x400 pixels. Subsequently, these 

images were resized to 224x224 pixels to align with the 

input size requirements of the pre-trained models to be 

used in the research. This resizing is a crucial step to 

ensure compatibility with the chosen models. The image 

data was stored in the form of numpy arrays, which 

facilitates the learning process by eliminating the need 

for additional conversion from images to numpy arrays 

during training. The extension of these files is *.npy, 

indicating their numpy array format. The files can be 

accessed through the following link: 

https://bit.ly/citraSIBI. 

C. Model Design 

At this stage, each algorithm is configured with 

specific parameters, aiming to evaluate the impact of 

these parameters on classification performance. In the 

CNN algorithm, the parameters tested include the 

number of epochs, types of convolutional layers, types of 

activation functions, and the number of dense layers. 

Additionally, CNN utilizes transfer learning 

architectures such as InceptionV3, MobileNetV2, 

ResNet50, VGG16, and Xception. This approach helps 

in understanding how different settings and architectures 

influence the overall effectiveness of the model in 

classifying images. 

InceptionV3, an evolution of the earlier Inception 

model, is designed to enhance image recognition 

accuracy and reduce overfitting. This model incorporates 

improvements such as the use of auxiliary classifiers, 

convolution factorization, and label smoothing 

regularization. With these features, InceptionV3 

becomes more efficient and flexible in handling complex 

image recognition tasks [12]. 

MobileNetV2 enhances the performance of mobile 

architectures across various tasks and benchmarks. This 

architecture employs inverted residual blocks and linear 

bottlenecks, enabling higher memory efficiency, crucial 

for mobile applications. Techniques such as 1x1 

convolutions, inverted residual blocks, batch 

normalization, and residual connections improve 

gradient propagation capabilities and reduce memory 

requirements [13]. 

ResNet50 is a 50-layer Convolutional Neural 

Network (CNN) that utilizes residual blocks, enabling 

the addition of more convolutional layers without 

encountering the problem of vanishing gradients, thanks 

to the use of shortcut connections. These connections 

"skip" some layers, transforming a regular network into 

a residual network [14]. Despite ResNet50's large 

number of parameters, it has a simpler architecture 

compared to VGGNet. It remains effective with fewer 

filters and reduced complexity, making it faster in 

training.  

The VGG16 model is a Convolutional Neural 

Network (CNN) that supports 16 layers. It is designed to 

replace large filters with a sequence of smaller 3x3 

filters, enhancing non-linear activation functions and 

allowing the network to converge quickly. VGG16 

utilizes these smaller convolutional filters to reduce the 

tendency towards overfitting during training, making it 

the smallest model capable of understanding the spatial 

features of images [15]. 

Xception is a convolutional neural network 

architecture that fully relies on depthwise separable 

convolution layers. It represents an enhancement of the 

Inception architecture, modifying depthwise separable 

convolutions for improved performance. Xception posits 

that the mapping of cross-channel correlations and 

spatial correlations within the feature maps of 

convolutional neural networks can be entirely decoupled. 

Comprising 36 convolutional layers structured into 14 

modules, all equipped with linear residual connections 

around them, the Xception architecture offers a simpler 

and more efficient approach compared to Inception V3. 

This efficiency is particularly evident in terms of the 

number of parameters and training performance [16]. 

The transfer learning technique employed involves 

omitting the output part of each architecture. 

Subsequently, this output section is replaced with an 

output layer consisting of 36 neurons used for the 

classification process, employing softmax activation. An 

illustration of the CNN architecture design using pre-

trained ImageNet models is depicted in Fig. 3. 

 

 

Fig. 3 The design of an architecture for classifying letters 

and numbers using pre-trained models 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 1, May 2024 

Comparative Analysis of CNN … | Brianorman, Y., Utami, D., 61 – 70  65 

Fig. 4 illustrates a comparison of the number of 

parameters among five different CNN architectures: 

VGG16, InceptionV3, MobileNetV2, ResNet50, and 

Xception. From the graph, it is evident that VGG16 has 

the lowest number of parameters, 903,204, indicating a 

relative simplicity in its architecture. This suggests 

potential for faster training and lighter implementation, 

though it may come with limitations in accuracy or the 

ability to learn complex features. Conversely, Xception 

and ResNet50, each with 3,612,708 parameters, indicate 

higher complexity, often associated with better 

capability to learn detailed data features, potentially 

leading to higher accuracy. InceptionV3 and 

MobileNetV2, with parameter counts in between, offer a 

balance between complexity and efficiency. However, 

the number of parameters is not the sole determinant of 

model performance, as factors like data quality, specific 

architecture, training methods, as well as memory and 

computational time requirements, also play crucial roles. 

D. Training Model 

At this stage, all the image data used have a size of 

224x224, consistent with the dimensions set during the 

collection of image data. The total image data consists of 

2,515 images, which include 26 signals representing 

letters and 10 signals for numbers. All images trained in 

this study are 224x224 pixels in size, in line with the 

dimensions established when the image data was 

collected. The total number of images available is 2,515, 

comprising 26 signals for letters and 10 signals for 

numbers. 

Next, the image data is divided into three categories: 

training data, validation data, and test data. This division 

process is done in two steps: first, all data is randomized, 

and then divided with a proportion of 80% for training 

data, 10% for validation data, and the remaining 10% for 

test data. The details of this data division can be seen in 

TABLE I. 

 
Fig. 4 Graph of the total number of parameters used in 

each pre-trained model 

TABLE I  

DIVISION OF TRAINING DATA, VALIDATION DATA, 

AND TEST DATA 

Data Percentage Amount 

Training Data  80% 2012 

Validation Data  10% 251 

Test Data 10% 252 

The hyperparameter configuration for the CNN 

architecture can be seen in  

  True/Actual Class 

  Positive(P) Negative(N) 

Predicted 

Class 

True 

(T) 

True Positive 

(TP) 

False Positive 

(FP) 

False 

(F) 

False Negative 

(FN) 

True Negative 

(TN) 

  P=TP+FN N=FP+TN 

Fig. 5 Confusion matrix 

TABLE II. During the training process, the 

hyperparameters are adjusted as follows: the use of the 

Adam optimizer, a learning rate set at 0.001, the loss 

function utilizing categorical loss, training carried out for 

30 epochs, and a batch size set to 32. Additionally, the 

learning process will be halted if there is no improvement 

in accuracy over 5 consecutive epochs. This is indicated 

by a hyperparameter of patience = 5. 

E. Testing Model 

The testing process conducted using the image data 

of SIBI letter and number signs aims to evaluate the 

classification performance at each stage, including 

training, validation, and testing. The performance of 

each stage will be measured using various metrics, 

including precision (1), recall (2), accuracy (3), and F1-

Score (4). These metrics provide a comprehensive 

overview of the model's effectiveness in accurately 

classifying data. This testing will be consistently applied 

to each pre-trained CNN architecture used in this 

research, ensuring that each architecture can be 

evaluated and compared based on the same criteria. 

Thus, it will be possible to determine which architecture 

is most effective in recognizing and processing SIBI 

letter and number sign images. The confusion matrix was 

illustrated in Fig. 5. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙
           (4) 
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  True/Actual Class 

  Positive(P) Negative(N) 

Predicted 

Class 

True 

(T) 

True Positive 

(TP) 

False Positive 

(FP) 

False 

(F) 

False Negative 

(FN) 

True Negative 

(TN) 

  P=TP+FN N=FP+TN 

Fig. 5 Confusion matrix 

TABLE II  

CNN ARCHITECTURE HYPERPARAMETERS 

Hyperparameter Value 

Optimizer Adam 

Learning Rate 0,001 

Loss function Categorical Cross Entropy 

Epoch 30 

Batch size 32 

Patience 5 

Fig. 5 explains the four main variables: TP, FP, FN, 

and TN, and visualizes four possible prediction 

scenarios. In the image, white boxes represent accurate 

predictions, while gray boxes indicate inaccurate 

predictions. The True Positive (TP) variable indicates a 

match between a correct prediction and a true reality. 

Conversely, True Negative (TN) indicates a match 

between a wrong prediction and a false reality. 

Meanwhile, a False Positive (FP) represents a situation 

where the prediction indicates something as true when it 

is false. Finally, False Negative (FN) refers to cases 

where the prediction indicates something as false when 

it is true. 

III. RESULT AND DISCUSSION 

This section will focus on two crucial aspects: the 

discussion of results from training and validation, and the 

evaluation of testing outcomes. The training and 

validation process is essential for measuring the model's 

effectiveness in understanding data, while testing 

provides insights into the model's performance with new 

data. This research utilizes Google Colab Pro as the 

primary platform for training and testing, at a rental cost 

of $11.09 per month, allowing access to high computing 

resources. This ensures that the research is conducted 

with adequate resources, optimizing the performance and 

efficiency of the tested models. 

 

A. Training and Validation Results 

The training process was conducted using the concept 

of transfer learning from each pre-trained CNN model, 

namely MnetV2, VGG16, ResNet50, and Xception. This 

training was carried out for 100 epochs with 

hyperparameters as shown in Table II. However, the 

training would be stopped if there was no improvement 

in accuracy over 5 consecutive epochs. Fig. 6 shows the 

training results for each model used in this study. 

The analysis of the performance of different pre-

trained Convolutional Neural Networks (CNN) models 

reveals intriguing results. The VGG16 model, with a 

training accuracy of 99.60% and validation accuracy of 

98.41% in just five epochs, demonstrates an exceptional 

ability to generalize learning from training data to 

validation data. The Inception model indicates that 

improvements in training strategies or architectural 

adjustments are needed to enhance efficiency and 

effectiveness. With a training accuracy of 100.00% in 12 

epochs, MobileNetV2 achieved a validation accuracy of 

95.62%, suggesting the potential for overfitting, which 

warrants further investigation. ResNet50, with 99.40% 

training accuracy and 97.21% validation accuracy over 

26 epochs, showcases consistent and reliable 

performance, indicating its capability to balance learning 

and generalization. Lastly, XCeption also achieved 

perfect training accuracy at 100.00%, but its validation 

accuracy of 96.81% in 16 epochs suggests a possibility 

of overfitting. 

Overall, these findings emphasize the importance of 

measuring both training accuracy and validation 

performance to assess a model's generalization ability. 

While MobileNetV2 and XCeption require more careful 

handling to address overfitting issues, models like 

VGG16 and ResNet50 strike a good balance between 

learning and generalization. By evaluating accuracy, 

training efficiency, and generalization capability, this 

research provides critical insights on how to best select 

CNN architectures for specific image classification 

applications. The complete training and validation 

results are presented in TABLE III. 

 
TABLE III  

TRAINING ACCURACY AND VALIDATION RESULTS 

Pre-trained Model Accuracy Validation Epoch 

VGG16 0.9960 0.9841 5 

Inception 0.9051 0.9124 28 

MobileNetV2 1.0000 0.9562 12 

ResNet50 0.9940 0.9721 26 

XCeption 1.0000 0.9681 16 
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a. Model VGG16 

  
b. Model Inception 

  
c. Model ModelNetV2 

  
d. Model ResNet50 

 

  
e. Model Xception 

Fig. 6 Graph of training results for each pre-trained 
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The significance of selecting an appropriate CNN 

architecture for SIBI image classification is shown by the 

training and validation outcomes. The high accuracy of 

models like VGG16 and ResNet50 can be attributed to 

their architectural strengths—VGG16's deep layers 

effectively capture detailed visual features, while 

ResNet50's residual connections facilitate deeper 

learning without gradient vanishing, crucial for the 

nuanced differentiation required in sign language 

images. This analysis not only aligns with our research 

objectives but also highlights the effectiveness of 

specific network architectures in addressing the 

challenges of SIBI image classification, paving the way 

for future advancements in the field. 

 
B. Test Results 

If validation data is used as a performance check 

during the training process and is consistently observed 

at each epoch, then test data represents data that the pre-

trained model has never seen during the training process. 

In other words, this data can be used as a benchmark for 

the actual implementation of the system. A model's 

training outcome might perform well in experiments, but 

it may not show good accuracy on data it has never seen 

during the training process. This underscores the 

importance of testing a model using test data. The 

division of the dataset is illustrated in TABLE IV. 

 
TABLE IV  

TEST ACCURACY RESULTS 

Pre-Trained 

Model 

Accuracy Precision Recall F1-Score 

VGG16 0.9960 0.9965 0.9960 0.9960 

Inception 0.8769 0.9125 0.8769 0.8827 

MobileNetV2 0.9880 0.9894 0.9880 0.9880 

ResNet50 0.9880 0.9896 0.9880 0.9880 

XCeption 0.9523 0.9592 0.9523 0.9526 

 

The testing results using test data reveal significant 

performance differences among various pre-trained 

Convolutional Neural Networks (CNN) models. One of 

the best-performing models, VGG16 (Fig. 7), shows 

exceptional performance; it achieved an accuracy of 

87.69% and an almost perfect F1-Score of 88.27%, 

indicating VGG16's highly effective capability in 

classifying test data with high accuracy. In contrast, the 

Inception model exhibits lower performance, with an 

accuracy of 87.69% and an almost perfect F1-Score, all 

above 99%. These results suggest that, compared to other 

models, Inception may be less effective in generalizing 

learning to test data. Meanwhile, MobileNetV2 and 

ResNet50 demonstrate impressive and nearly identical 

results, with accuracy, precision, recall, and F1-Scores 

around 98.80%, indicating high reliability in classifying 

test data. Lastly, XCeption, with an accuracy of 95.23% 

and an F1-Score of 95.26%, shows solid performance but 

is slightly below the standard set by MobileNetV2 and 

ResNet50. In conclusion, while each model has its 

strengths, VGG16 and ResNet50 emerge as highly 

effective choices for applications requiring high 

accuracy and consistency in image classification. 

The VGG16 architecture is a prominent deep 

convolutional neural network that is both deep and 

straightforward in design, consisting of thirteen 

convolutional layers that use 3x3 filters, the smallest 

practical size for capturing image features such as 

patterns, edges, colors, and textures. It processes input 

images of 224x224 pixels resolution through these 

convolutional layers, each followed by a ReLU 

activation function to add non-linearity. The network 

employs 2x2 max pooling layers to reduce spatial 

dimensions between convolutions. It concludes with 

three densely connected layers, boasting 4096, 4096, and 

1000 neurons respectively, leading to a softmax output 

layer that classifies images into 1000 categories, which 

is typical for ImageNet competition tasks. This design 

has positioned VGG16 as a powerful tool for feature 

extraction and image classification.

 

 

Fig. 7 VGG16 architecture 
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Moreover, the VGG16 model's success in various 

applications can be attributed to its ability to generalize 

well from large pre-trained datasets like ImageNet to 

specific tasks with limited data availability. This transfer 

learning potential is particularly beneficial in fields like 

sign language recognition and medical image analysis 

where collecting annotated datasets is challenging. 

VGG16's adaptability and resilience as a feature 

extractor are highlighted by its efficacy in diverse fields, 

including dementia severity assessment, cancer 

prediction, and bone anomaly identification. Such 

achievements are documented in studies like "Bone 

Abnormalities Detection and Classification Using Deep 

Learning-Vgg16 Algorithm" [17] and "VGG16 Feature 

Extractor with Extreme Gradient Boost Classifier for 

Pancreas Cancer Prediction," [18] underscoring the 

model's broad applicability and exceptional performance 

in image classification tasks. 

IV. CONCLUSION 

The testing results across various Convolutional 

Neural Networks (CNN) architectures indicate that 

VGG16 and ResNet50 stand out in evaluating different 

CNN models. VGG16 excels with nearly perfect 

accuracy (99.60%) and similar scores in precision, recall, 

and F1-Score, demonstrating its exceptional ability to 

classify data with high precision. In contrast, ResNet50 

also shows strong performance with accuracy, precision, 

recall, and F1-Score around 98.80%, indicating its 

effectiveness in classifying data accurately and 

effectively. Both models exhibit high suitability for 

applications that require high levels of accuracy and 

consistency. Meanwhile, XCeption and Inception offer 

balanced performances, with XCeption recording 

accuracy and F1 Scores above 95%, and Inception 

showing potential for improvement. MobileNetV2, 

despite its high accuracy and recall, has a lower F1-

Score, indicating potential challenges in balancing the 

identification of true positives and avoiding false 

positives. In conclusion, while VGG16 and ResNet50 

stand out as the best models for applications demanding 

high levels of accuracy and precision, other models like 

XCeption and Inception remain relevant for specific 

needs, whereas MobileNetV2 requires further evaluation 

in aspects of precision and recall. There are opportunities 

to test new CNN architectures such as EfficientNet or 

Transformer-based models, as well as to implement 

more advanced methods for data augmentation and 

transfer learning in future research. To combat 

overfitting, it's also crucial to focus on regularization 

techniques and hyperparameter optimization. 

Furthermore, conducting investigations into the 

interpretation and transparency of models can provide 

valuable insights, especially for determining their 

relevance in various practical situations. 
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