
JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186 177

Time Complexity of Knuth Morris Algorithm and

Rejang Algorithm in Rejang-Indonesian Translator

Sastya Hendri Wibowo1*, Rozali Toyib2, Yulia Darnita3, Satria Abadi4

1,2,3Informatics Engineering Study Program, Muhammadiyah University of Bengkulu, Indonesia
4Computing and Meta-Technology, Universiti Pendidikan Sultan Idris, Malaysia

*corr_author: sastiahendriwibowo@gmail.com

Abstract - Among the pattern-matching algorithms is the

Knuth-Morris algorithm. In order to minimize the number

of comparisons required and, in the worst scenario,

achieve an ideal O(n+m) running time, the Knuth-Morris

search algorithm skips unneeded comparisons. Every

character in the text and every character in the pattern

must be checked at least once by the pattern-matching

algorithm. The Knuth-Morris algorithm's primary goal is

to preprocess the pattern string P in order to determine the

failure function f, which displays P's precise shift, so that

earlier comparisons can be reused. In order to extract the

fundamental word of the attached sentence, words

containing affixes are separated using the Rejang

stemming method. The purpose of this research is to

determine the time complexity of the Rejang method and

the Knuth-Morris algorithm based on affix groups. The

Rapid Application Development (RAD) approach, which

entails planning, designing, building, and implementing, is

used during the research stages. The research results have

produced efficient and effective Knuth Morris algorithm

and Rejang algorithm, where efficiency is indicated by the

algorithm time complexity of O (log n), and effectiveness is

indicated by the accuracy results of 99% against testing

6000 affixed words.

Keywords: Knuth Morris algorithm, Rejang algorithm,

time complexity

I. INTRODUCTION

Indonesia is rich in culture, one of which is regional
Speechs. Regional Speechs in Indonesia differ in
structure and vernacular, such as the Minang Speech in
West Sumatra, the Batak Speech in North Sumatra, the
Sundanese Speech in West Java, and the Rejang Speech
in Bengkulu. Regional Speechs oral in Indonesia,
including the Rejang Speech oral in Bengkulu, the
Sundanese Speech oral in West Java, the Batak Speech
oral in North Sumatra, and the Minang Speech oral in
West Sumatra, differ in structure and Vernacular. Every
province undoubtedly has a printed regional Speech
dictionary, albeit not all of them have been created as
digital dictionaries [1], [2]. In the current era of computer
technology, it is essential to build a digital dictionary that

contains regional Speech vocabulary, an application for
translating words and sentences from one regional
Speech into Indonesian and vice versa, making it simpler
for people to understand the meaning of the words and
sentences and facilitating communication between
speakers of different regional Speechs, The Rejang
Speech is one of the regional tongues orals in Indonesia.
About 500,000 native speakers of the Rejang Speech
speak it as a regional Speech in Rejang Lebong District
and the neighboring regions of Bengkulu Province and
South Sumatra Province. The Malay or Indonesian
Speech family includes the Rejang Speech. In addition to
its structured structure, the Rejang Speech uses the
Kaganga script as its writing system. Several researchers
have conducted research on the Rejang Speech from a
morphological or linguistic perspective, such as a) S.
Nafsin et al. in 1981 on the Structure and Syntax of the
Rejang Speech, b) Saleh Y. in 1988 on the
Morphological System of the Rejang Speech, c) R.
Atrizai in 1994 on the Syntax of the Coastal Vernacular
of Rejang Speech, d) SF Wibowo in 2016 on Segmental
Phonemes and Their Distribution in the Rejang
Vernacular. In addition, research has also been
conducted on the development of algorithms or
combinations of other algorithms in the Rejang Speech,
such as: a) The Journal of Advanced Research in
Dynamical and Control Systems published a paper by
Sastya Hendri Wibowo in 2019 titled "Development of
Stemming Algorithm for Rejang Speech." The system
was initially utilized to find root words, b) In the Journal
of Computational and Conceptual Nanoscience, Sastya
Hendri Wibowo's 2019 paper Spelling Checker of Words
in Rejang Speech Using the N-Gram and Euclidean
Distance Methods describes how to combine the N-Gram
and Euclidean Distance methods to check spelling in
Rejang Speech words, c) Sastya Hendri Wibowo in 2022
Time Complexity in Rejang Speech Stemming published
in the Infotel Journal regarding the calculation of the
complexity of the Rejang stemming algorithm, and d) In
2023, Sastya Hendri Wibowo submitted a paper in the
Journal of Information System Research (JOSH) on
NLP-Based Information Systems for Preserving Local

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

178 Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186

Culture in Bengkulu Province. The paper tested the
Rejang stemming method in information systems [3]-[6].
All of these studies are still in the testing or development
stage of the method and have not been implemented in
the form of an application system that is widely used and
utilized by the community, especially in Bengkulu
province, this has an impact on the lack of public interest
in getting to know, learn and preserve the Rejang Speech.
One of the causes is the lack of access for the community
to information about the Rejang Speech.

Based on the above problems, the problem-solving
approach is to create an application system that can
provide access to the public to understand the Rejang
Speech such as a) Rejang Digital Dictionary, which
functions as a database containing all Rejang vocabulary,
b) Rejang to Indonesian Speech translator, which
functions to understand the meaning of Rejang
vocabulary, c) Information about the Rejang Speech that
will display the history of the Rejang Speech, and the
Kaganga Rejang letters. The latest system designed is
based on Artificial Intelligence (AI) using the Rejang
algorithm and the Knuth Morris algorithm for the
Rejang-Indonesian Speech translator, meaning that the
system will combine two algorithms, namely the Rejang
stemming algorithm and the Knuth Morris algorithm
which function to truncate words with affixes and match
patterns in sentences, as well as the addition of chatbot
features and voice recognition as support which is part of
Artificial Intelligence (AI). The general objectives of this
study are: a) preserving the local cultural wisdom of the
Rejang Speech, b) helping the community to easily know,
learn, and understand the Rejang Speech, c) creating a
Rejang-Indonesian Speech translator application system
by combining the Rejang stemming algorithm and the
Knuth Morris algorithm based on AI. Specifically, to
obtain the time complexity of the Knuth-Morris and
Rejang algorithms.

II. METHOD

A. Research Steps
This research uses the Rapid Application

Development (RAD) method, which is intended for the
short term according to the system or application being
developed. The Rapid Application Development (RAD)
flow is shown in Fig. 1. The steps are as follows [7]-[10]:

a) Planning: Identifying problems in the
community through community leaders in Rejang
Lebong district. Field surveys were conducted in the
Rejang Lebong district where the majority of people use
the Rejang Speech as a Speech of communication. The
team involved in this stage is the Head, Members, and
Rejang traditional leaders

b) Design: The system design is made in the form
of a flowchart and interface. There are three algorithms
used at this stage, namely the Rejang Stemming
algorithm which functions to separate or chop words that
are combined into basic words, the Knuth Morris
algorithm which functions to check grammatical patterns
contained in a word, and the Natural Speech algorithm
Processing used for chatbot features and voice
recognition. The team involved in this stage is the Chair
and Members

c) Construction: The design that has been made is
then implemented into a programming Speech that aims
to create a system in the form of an application, namely
an interface and database. The team involved in this
stage is the Chairperson and Members

d) Implementation: The system design that has
been written in the coding is then tested and analyzed, to
determine the success of the system that has been created.
Testing is carried out on the algorithm and interface
using Rejang Speech variables or data. The team
involved in this stage is the Chairman, Members, and
Rejang Traditional Figures.

The Knuth-Morris and Rejang algorithms are used in
this study. Entering a word or sentence in the Rejang
Speech and then verifying it in the database is the first
step in translating it into Indonesian. The next step is
string matching, which matches strings based on terms
found in the Rejang database, if the word or sentence is
present in the database. The Rejang Stemming algorithm
is used to cut words containing prefixes (men-, ke-, be-,
ne-, te-, se-) and inserts (-em-, -en-), suffix (-ke), and
combined (be- + ke-, te- + ke-, se- + ke-, ke- + -ke) based
on Rejang Speech structure before translating words
from the Rejang Speech into Indonesian or vice versa.
Rejang Speech structure is used to determine suffixes (-
ke) and combinations (be- + ke-, te- + ke-, se- + ke-, ke-
+ -ke) using the Rejang Stemming algorithm. A list of
Rejang Speech affix words is shown in Table 2. Utilizing
the Knuth Morris method, the definition of a word is
displayed after the process of looking up the word in the
Rejang digital dictionary. To ascertain a sentence's
structure, Knuth Morris will examine the grammar of
sentences or input data that is given as a text string. The
Knuth-Morris technique yields a response indicating
whether the text string in question is a member of the
Speech used to explain a specific sentence. Additionally,
Knuth Morris is used to detect grammatical faults in
sentences and determine whether or not they make sense.
The 6000 words in the traditional Rejang Speech
dictionary, which was compiled by Rejang cultural
specialists in Bengkulu, provide the data used as a digital
dictionary for the Rejang Speech.

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186 179

Fig. 1 Rapid application development (RAD) method

B. Performance Analysis of Rejang Algorithm

The Rejang Stemming Algorithm in this study is an

algorithm developed from the Searching process to look

up root words in the digital dictionary of the Rejang

Speech [11][12]. The Binary Searching algorithm, with

a temporal complexity of O (log n), was employed in this

investigation. The number of root words in the Rejang

Speech digital dictionary is represented by n. Checking

the prefix, inserting the data, checking the suffix,

checking the union, and checking the third procedure

make up the main procedure. The searching procedure is

used by every path in each sub-routine. Thus, Maximum

[4 O (log n), O (log n), O (log n), O (log n)] = 4 O (log

n) = O (log n) is the maximum value of the time

complexity of the deletion method 1, 2, 3, or 4. This is

the time complexity of the main procedure. Fig. 2(a)

shows that the prefix deletion technique has a difficulty

of 4 (log n), while Fig. 2(b) shows that the complexity of

the main deletion procedure is = O (log n).

 (a) (b)

Fig. 2 (a) The complexity of the main procedure of deletion is = O (log n), (b) The complexity of the Prefix removal

procedure is 4 (log n)

Start

F

F

F

T

T

T

F

T

Enter Affixed

Words

Check in The

Base Word

Dictionary

Check

Prefix

Check

Sufix

Show

Basic Word End

F

T Check

Infix

Check

Combined

1

2

3

4

4 O (log n)

O (log n)

O (log n)

O (log n)

F

F

F

T

T

T

F

T

Start

Enter Affixed

Words

Check in The

Base Word

Dictionary

Check

Prefix

Check

Sufix

Show

Basic Word

End

F

T
Check

Infix

Check

Combined

1

2

3

4

Planning Design Construction Implementation

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

180 Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186

The study of the time complexity computation of the

deletion procedures 1, 2, 3, and 4—which are explained

below—provides the difficulty of the algorithm (main

procedure) of 4 O ((log n). The procedures 1A (check

prefix men), 1B (check prefix ke), 1C (check prefix be),

1D (check prefix te), and 1F (check prefix ke) make up

Subprocedure 1 (Check prefix). Every path within each

sub-process employs the searching procedure. Thus,

process 1's time complexity is equal to the total of the

MAXIMUM value of the time complexity of procedures

1A, 1B, 1C, 1D, 1E, and 1F, or Maximum [4 O (log n),

O (log n), O (log n), O (log n)] = 4 O (log n). The

analysis of the time complexity calculation of the

elimination methods 1, 2, 3, and 4—which are explained

below—provides the complexity of the algorithm (main

process) of 4 O ((log n).

Procedures 1A, 1B, 1C, 1D, and 1F are the

components of subprocedure 1 (check prefix), which is

the check prefix men, check prefix be, check prefix te,

and check prefix to. Every path within each sub-process

employs the searching procedure. Consequently,

procedure 1's time complexity is equal to the total of the

time complexity of the Maximum value of the time

complexity of procedures 1A, 1B, 1C, 1D, 1E, and 1F,

or Maximum [4 O (log n), O (log n), O (log n), O (log n),

O (log n)] = 4 O (log n). Fig. 3 illustrates that the prefix

removal process has a 4 (log n) complexity.

Procedures 2A (check insertion em) and 2B (check

insertion en) make up subprocedure 2 (Check insertion).

Every path within each sub-process employs the

searching procedure. Thus, process 2's time complexity

is equal to the maximum of 2A and 2B's time complexity,

or Maximum [O (log n), O (log n)] = O (log n). The

insertion-deletion procedure's complexity (log n) is

shown in Figure 4(a), and the -Ke Suffix Procedure's

time complexity (log n) is shown in Fig. 4(b).

The procedures for the Vowel Prefix and Consonant

Prefix are part of Sub-procedure 3 (Check prefix ke). All

of the paths in each sub-process use a search procedure.

Thus, process 3's temporal complexity stems solely from

that of the Vowel Prefix or Consonant Prefix Removal

procedures. Therefore, process 3's temporal complexity

is O (log n).

Fig. 3 Complexity of the deletion procedure the prefix

is 4 (log n)

(a) (b)

Fig. 4 (a) The complexity of the insertion-deletion procedure is (log n), (b) The Time Complexity of the -Ke Suffix

Procedure is 1 (log n)

1A 4 (log n)

O (log n)

O (log n)

O (log n)

O (log n)

O (log n)

F

F

F

F

F

T

T

TCheck

"men"

Check

“ke”

Check
“be”

TCheck

“ne”

T
Check

“te”

TCheck

“se”

1B

1C

1D

1E

1F

1

O (log n) T Check

Ke

3

3A

O (log n)

O (log n) T
Check the

Second and

Third Letters

“en”

T Check the

Second and

Third Letters

“em”

2

2A

2B

F

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186 181

C. Performance Analysis of Knuth Morris Algorithm

The Knuth-Morris Algorithm is a pattern-matching

algorithm used in this investigation. In order to minimize

comparisons and, in the worst scenario, achieve an ideal

O(n+m) running time, the Knuth-Morris search method

removes unneeded comparisons. Every character in the

text and every character in the pattern must be checked

at least once by the pattern-matching algorithm. The

Knuth-Morris algorithm's primary concept is to

preprocess the pattern string P in order to compute the

failure function f, which displays P's precise shift and

allows the program to reuse previously conducted

comparisons [13]-[15]. The Binary matching algorithm,

whose temporal complexity is O (log n), was employed

in this work to match patterns. The number of root words

in the Rejang Speech digital dictionary is represented by

n. Procedures 1 (prefix matching), 2 (insertion

matching), 3 (suffix matching), and 4 (combination

matching) make up the primary procedure. Every path

within each sub-process employs the matching

procedure. Then, the maximum value of the time

complexity of the deletion operations 1, 2, 3, or 4—that

is, Maximum [4 O (log n), O (log n), O (log n), O (log

n)] = 4 O (log n) = O (log n—is the time complexity of

the main procedure. In Fig. 5(a), the prefix removal

procedure's complexity is expressed as = O (log n),

whereas in Fig. 5(b), it is expressed as 4 (log n).

The study of the time complexity computation of the

deletion procedures 1, 2, 3, and 4—which are explained

below—provides the difficulty of the algorithm (main

procedure) of 4 O ((log n). Prefix matching is the first

subprocedure, and it includes procedures 1A (prefix

matching men), 1B (prefix matching ke), 1C (prefix

matching be), 1D (prefix matching te), and 1F (prefix

matching ke). Every path makes use of the matching

procedure in each sub-process. Thus, procedure 1's time

complexity is equal to the total of the Maximum value of

the time complexity of procedures 1A, 1B, 1C, 1D, 1E,

and 1F, or Maximum [4 O (log n), O (log n), O (log n),

O (log n)] = 4 O (log n). Procedures 2A (em insertion

matching) and 2B (en insertion matching) make up

subprocedure 2 (insertion matching). Every path within

each sub-process employs the matching procedure. Thus,

process 2's time complexity is equal to the maximum of

2A and 2B's time complexity, or Maximum [O (log n),

O (log n)] = O (log n). The insertion-deletion procedure's

complexity (log n) is shown in Figure 6(a), while the -Ke

Suffix Procedure's time complexity (log n) is shown in

Fig. 6(b).

(a) (b)

Fig. 5 (a) The complexity of the main procedure of deletion is = O (log n), (b) the complexity of the Prefix removal

procedure is 4 (log n)

4 O (log n)

O (log n)

O (log n)

O (log n)

F

F

F

T

T

T

F

T

Start

Enter Affixed

Words

Check in the base

word dictionary

Check

Prefix

Check

Sufix

Show

Basic WordEnd

F

T
Check

Infix

Check

Combined

1

2

3

4

1A 4 (log n)

O (log n)

O (log n)

O (log n)

O (log n)

O (log n)

F

F

F

F

F

T

T

TCheck

"men"

Check

“ke”

Check
“be”

TCheck

“ne”

TCheck

“te”

TCheck

“se”

1B

1C

1D

1E

1F

1

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

182 Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186

(a) (b)

Fig. 6 (a) The complexity of the insertion-deletion procedure is (log n), (b) the time complexity of the -Ke suffix

procedure is 1 (log n)

The Vowel Prefix procedure and the Consonant

Prefix procedure make up Subprocedure 3 (Matching

prefix to). Every path in a sub-process employs a

matching procedure. Therefore, process 3's time

difficulty solely stems from the Vowel Prefix or

Consonant Prefix Removal technique's time complexity.

Procedure 3's temporal complexity is therefore O (log n).

Procedures 4A (Joint Matching Beke), 4B (Joint

Matching Teke), 4C (Joint Matching Seke), and 4D

(Joint Matching Keke) make up Sub-Procedure 4 (Joint

Matching). Every path within each sub-process employs

the matching procedure. The highest possible number of

the time complexity of 4A, 4B, 4C, and 4D, or Maximal

[O (log n), O (log n), O (log n), O (log n)] = O(log n), is

the time complexity of operation 4. The level of

complexity of the merging deletion procedure is shown

in Fig. 7 as O (log n).

III. RESULT AND DISCUSSION

A. Testing Affixed Words

There are 6000 fundamental terms in the digital

Rejang Speech dictionary. This study's algorithm testing

was doneon 6,000 common words. Table I lists some

simple word instances that were chosen for testing.

Fig. 7 Complexity of merge deletion procedure is O

(log n)

TABLE 1

EXAMPLES OF BASIC REJANG SPEECH WORDS USED FOR TESTING

No. Group Basic Words Example

1. Basic words starting with a vowel
Asen, Abau, Es, Enteng, Inat, Idau, Oak, Oloa, Okoa, Ulok,

Ulek, Uku

2.
Basic words starting with

consonants

Biyoa, Baleit, Cao, Coa, Dang, Das, Gelembung, Guak, Has,

Han, Has, Jas, Jer, Jin, Jok

Lucut, Kecek, Keing, Lawen, Le, Leak, Makiak, Malapak,

Manat, Nakut, Naliak, Naling, Panes, Pangar, Patang, Ragam,

Renyeng, Retek, Segit, Sekalit, Segan, Tegulek, Tekanak,

Tekeung, Wakaf, Wakea, Waktau, Yau, Yung

3.
Basic words starting with the letter

"K"
Kacea, Kaak, Kaang, Kabar

O (log n)

O (log n)

O (log n)

O (log n)

4

F

F

F

TCheck

“be + ke”

TCheck

“te + ke”

TCheck

“se + ke”

TCheck

“ke + ke”

4A

4B

4C

4D

O (log n) T Check

Ke

3

3A

O (log n)

O (log n) T
Check the

Second and

Third Letters

“en”

T Check the

Second and

Third Letters

“em”

2

2A

2B

F

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186 183

The Rejang-Indonesian Speech translator was used to

test the Rejang and Knuth Morris method using 6000

basic words or affixes, which are basic words that begin

with a vowel, a consonant letter, or the letter "k." Table

2 shows the total number of words containing affixes for

each group. Table II displays the total number of words

containing affixes for each group.

B. Basic Word Test Results

Table III displays the findings of evaluating a number

of fundamental terms using the Rejang and Knuth Morris

algorithm. The results of testing 6000 words are shown

in Table IV, with success = 5975 and failure = 25.

IV. CONCLUSION

Eighteen groups/types of smallest affixes were

identified in the Rejang Speech based on the results of

the morphological study of the affix addition process.

These were then used as conditional statements in the

Rejang and Knuth Morris stemming method. It is known

that the Rejang and Knuth Morris stemming algorithm

sequentially removes affixes by first eliminating prefixes,

then inserts, then suffixes, and lastly combinations. This

knowledge stems from the results of examining and

analyzing the structure of the process of adding affixes.

The Rejang and Knuth Morris stemming algorithm's time

complexity was successfully tested in this study, and the

algorithm's usefulness was shown by its O(log n) time

complexity and 99% accuracy rate when evaluating 6000

attached words.

TABLE II

NUMBER OF WORDS PER GROUP BASED ON BASIC WORDS STARTING WITH

VOWELS, CONSONANTS AND ‘K’

No.
Affixed Word

Groups

Number of words

starting with a

vowel

The number of

words that begin

with a consonant

The number of words

that begin with the

letter "K"

1. Prefix M- 0 600 0

2. Prefix Me- 0 600 0

3. Prefix Men- 0 600 0

4. Prefix Meng- 0 600 0

5. Prefix Menge- 0 600 0

6. Prefix Meng- 600 0 0

7. Prefix Ke- 0 0 600

8. Prefix Be- 600 0 0

9. Prefix Ne- 600 0 0

10. Prefix Te- 0 600 0

11. Prefix Se- 0 600 0

12. Prefix -em- 0 600 0

13. Prefix -en- 0 600 0

14. Suffix -ke 130 370 0

15.
Combined Prefix Be +

Ke
130 370 0

16.

Starting with a

combination of Te +

Ke

130 370 0

17.

 Starting with a

combination of Se +

Ke

130 370

0

18.

Starting with a

combination of Ke +

Berakhiran Ke

130 370 0

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

184 Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186

TABLE III

TEST RESULTS FOR SEVERAL WORDS USING THE REJANG AND KNUTH MORRIS ALGORITHMS

No. Affixed Words
Words being

tested
Results

Identify

Success

Failed to

Identify

1. Prefix M-, followed by a root word

using a consonant first

Mdecit

Mgusuk

Decit

Gusuk





-

-

2. Starting with Me-, followed by a root

word using a consonant first

Megusuk

Menyengak

Gusuk

Sengak





-

-

3. Starting with Men-, followed by a

root word using a consonant first

Mengusuk

Menanem

Gusuk

Tanem





-

-

4. Starting with Meng-, followed by a

root word using a consonant first

Mengusuk

Mengacau

Gusuk

Kacau





-

-

5. Starting with Meng-, followed by a

root word using a consonant first

Mengekaba

mengekabeu

Kaba

Kabeu





-

-

6. Beginning with Meng-, followed by a

root word Starting with the vowels

Mengike

Mengokos

Ike

Okos





-

-

7. Starting with Ke-, followed by a root

word Beginning with a vowel

Mengike

Mengokos

Ike

Okos





-

-

8. Beginning with Be-, followed by a

root word Beginning with a vowel

Mengike

Mengokos

Ike

Okos





-

-

9. Beginning with N- or Ne-, followed

by a root word Beginning with a

vowel

Neoloa

Neisut

Oloa

Isut





-

-

10. Beginning with Te- or T-, followed

by a root word Beginning with a

vowel

Tgamit

Tkecek

Gamit

Kecek





-

-

11. Starting with Se-, followed by a root

word Starting with a consonant

Segamit

Sekecek

Gamit

Kecek





-

-

12. Infix-em-, which in the root word

begins with a consonant

Wemen

Cemco

Wen

Ceco

-

-





13. Infix -en-, which in the root word

starts with a consonant

Denko

Cenco

Deko

Ceco

-

-





14. -ke, suffix, which starts with a root

word begins with a vowel or

consonant

Itungke

Okoske

Itungke

Okoske





-

-

15. A root word beginning with a vowel

or consonant, followed by the

combination be- and ke-

Bekeibo

Bekeotos

Ibo

Otos





-

-

16. combination of the words "te-" and

"ke-," followed by a vowel- or

consonant-based root word

Tekeicang

Tekeuleak

Icang

Uleak





-

-

17. Se-and-the combination is followed

by a vowel- or consonant-based root

word.

Sekekicok

Sekelipet

Kicok

Lipet





-

-

18. a string that begins and ends with-

and is inserted as a fundamental word

that begins with a vowel or consonant

Kelemke

Keosorke

Kelemke

Osor

-

-





JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186 185

TABLE IV

RESULTS OF 6000 WORD TEST (SUCCESS= 5975; FAIL= 25)

No. Word Count

Number of Words

Successfully

Identified

Number of

Failed Words

Identified

1. 500 words Suffix M-, followed by a root word starting with a consonant 500 0

2. 500 words affixed with Me-, followed by a root word starting with a

consonant
500 0

3. 500 words Affixed with Men-, followed by a root word starting with a

consonant
500 0

4. 500 words Affixed with Meng-, followed by a root word beginning with a

consonant
500 0

5. 500 words Affixed with Meng-, followed by a root word beginning with a

consonant
500 0

6. 500 words Affixed with Meng-, followed by a root word beginning with a

vowel
500 0

7. 500 words Suffixed to-, followed by a root word beginning with a vowel 500 0

8. 500 words Suffix Be-, followed by a root word beginning with a vowel 500 0

9. 500 words Suffix N- or Ne-, followed by a root word Beginning with a

vowel
500 0

10. 500 words Suffix Te- or T-, followed by a root word Beginning with a vowel 500 0

11. 500 words Suffix Se-, followed by a root word that begins with a consonant 500 0

12. 500 words with the insertion of -em-, followed by a root word that begins

with a consonant
497 3

13. 500 words affixed with -en-, followed by a root word that begins with a

consonant
493 7

14. 500 words affixed with the suffix -ke, which begins with a root word begins

with a vowel or consonant
500 0

15. 500 words starting with be- and ke-, followed by a root word starting with a

vowel or consonant
500 0

16. 500 words starting with te- and ke-, followed by a root word starting with a

vowel or consonant
500 0

17. 500 words starting with a combination of se- and th-, followed by a root

word starting with a vowel or consonant
500 0

18. 500 words with suffixes beginning with - and ending with -ke, which are

inserted with basic words starting with vowels or consonants
483 15

Total = 5975

(99 %)

Total = 25

(1 %)

REFERENCES

[1] S. Wibowo, B. Soerowirdjo, Ernastuti, and A. Tarigan,

“Development of stemming algorithm for Rejang Speech

stemmer based on rejang Speech structure,” J. Adv. Res.

Dyn. Control Syst., vol. 11, no. 5 Special Issue, pp. 1858–

1870, 2019.

[2] S. H. Wibowo, B. Soerowirdjo, Ernastuti, and A. Tarigan,

“Spelling checker of words in Rejang Speech using the

n-gram and Euclidean distance methods,” J. Comput.

Theor. Nanosci., vol. 16, no. 12, pp. 5384–5395, 2019,

doi: 10.1166/jctn.2019.8607.

[3] S. H. Wibowo, “Sistem Informasi Bahasa Rejang

Berbasis Natural Speech Processing (NLP) Untuk

Pelestarian Budaya Lokal,” vol. 5, no. 2, pp. 426–433,

2024, doi: 10.47065/josh.v5i2.4270.

[4] S. H. Wibowo, R. Toyib, M. Muntahanah, and Y. Darnita,

“Time complexity in Rejang Speech stemming,” J.

Infotel, vol. 14, no. 3, pp. 174–179, 2022, doi:

10.20895/infotel.v14i3.764.

[5] R. Sovia, S. Defit, Yuhandri, and Sulastri, “Development

of natural Speech processing on structure-based

Minangkabau Speech stemming algorithm,” Indones. J.

Electr. Eng. Comput. Sci., vol. 31, no. 1, pp. 542–552,

2023, doi: 10.11591/ijeecs.v31.i1.pp542-552.

[6] A. Sinaga, Adiwijaya, and H. Nugroho, “Development of

word-based text compression algorithm for Indonesian

Speech document,” 2015 3rd Int. Conf. Inf. Commun.

Technol. ICoICT 2015, pp. 450–454, 2015, doi:

10.1109/ICoICT.2015.7231466.

[7] P. Beynon-Davies, C. Came, H. Mackay, and D.

Tudhope, “Rapid application development (Rad): An

empirical review,” Eur. J. Inf. Syst., vol. 8, no. 3, pp.

211–232, 1999, doi: 10.1057/palgrave.ejis.3000325.

JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 12, No. 2, November 2024

186 Time Complexity of Knuth … | Wibowo, S.H., Toyib, R., Darnita, Y., Abadi, S., 177 – 186

[8] V. Kralev and R. Kraleva, “Methods and tools for rapid

application development,” Proc. III Int. Sci. Pract. Conf.

"Methodology Mod. Res. (March 29, 2017, Dubai, UAE),

vol. 1, no. 4 (20), pp. 21–24, 2017.

[9] N. M. N. Daud, N. A. A. A. Bakar, and H. M. Rusli,

“Implementing Rapid Application Development (RAD)

methodology in developing practical training application

system,” Proc. 2010 Int. Symp. Inf. Technol. - Syst. Dev.

Appl. Knowl. Soc. ITSim’10, vol. 3, pp. 1664–1667, 2010,

doi: 10.1109/ITSIM.2010.5561634.

[10] D. Tudhope, P. Beynon-Davies, H. Mackay, and R. Slack,

“Time and representational devices in rapid application

development,” Interact. Comput., vol. 13, no. 4, pp. 447–

466, 2001, doi: 10.1016/S0953-5438(00)00050-3.

[11] R. Setiawan, A. Kurniawan, W. Budiharto, I. H.

Kartowisastro, and H. Prabowo, “Flexible affix

classification for stemming Indonesian Speech,” 2016

13th Int. Conf. Electr. Eng. Comput. Telecommun. Inf.

Technol. ECTI-CON 2016, 2016, doi:

10.1109/ECTICon.2016.7561257.

[12] W. B. Demilie, “Implemented Stemming Algorithms for

Information Retrieval Applications,” J. Inf. Eng. Appl.,

vol. 10, no. 3, pp. 1–6, 2020, doi: 10.7176/jiea/10-3-01.

[13] R. D. Djati Pramono and S. Lorena, “Implementasi

algoritma knuth-morris-pratt dalam aplikasi untuk

penerjemahan idiom bahasa inggris 1),2),” pp. 1–6, 2015.

[14] O. Saputra, “Penerapan Algoritma Knuth Morris Pratt

dalam Aplikasi Penerjemah Teks,” no. 13510072, 2013.

[15] B. L. Pramudita, “Implementasi Algoritma Knuth Morris

Pratt pada Alat Penerjemah Suara,” no. 13511042.

