Emotional Text Classification Using TF-IDF (Term Frequency-Inverse Document Frequency) And LSTM (Long Short-Term Memory)
Abstract
Keywords
References
[1] J. Abdillah, “Klasifikasi Emosi pada Lirik Lagu menggunakan Metode Bidirectional LSTM dengan Pembobotan GloVe Word Representation Program Studi Sarjana Informatika Fakultas Informatika Universitas Telkom Bandung,” 2020, doi: 10.29207/resti.v4i4.2156.
[2] M. R. Firmansyah, R. Ilyas, and F. Kasyidi, “Klasifikasi Kalimat Ilmiah Menggunakan Recurrent Neural Network,” Pros. 11th Ind. Res. Work. Natl. Semin., vol. 11, no. 1, pp. 488–495, 2020, doi: 10.35313/irwns.v11i1.2055.
[3] M. R. Hasan, M. Maliha, and M. Arifuzzaman, “Sentiment Analysis with NLP on Twitter Data,” 5th Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2019, pp. 1–4, 2019, doi: 10.1109/IC4ME247184.2019.9036670.
[4] M. A. Fauzi, “Random forest approach fo sentiment analysis in Indonesian language,” Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 1, pp. 46–50, 2018, doi: 10.11591/ijeecs.v12.i1.pp46-50.
[5] W. K. Sari, D. P. Rini, and R. F. Malik, “Text Classification Using Long Short-Term Memory With GloVe Features,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 5, no. 2, p. 85, 2020, doi: 10.26555/jiteki.v5i2.15021.
[6] W. K. Sari, D. P. Rini, R. F. Malik, and I. S. B. Azhar, “Klasifikasi Teks Multilabel pada Artikel Berita Menggunakan Long Short- Term Memory dengan Word2Vec,” Resti, vol. 1, no. 10, pp. 276–285, 2017, doi: 10.29207/resti.v4i2.1655.
[7] M. Lestandy, A. Abdurrahim, and L. Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naive Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 802–808, 2021, doi: 10.29207/resti.v5i4.3308.
[8] Y. A. Solangi, Z. A. Solangi, S. Aarain, A. Abro, G. A. Mallah, and A. Shah, “Review on Natural Language Processing (NLP) and Its Toolkits for Opinion Mining and Sentiment Analysis,” 2018 IEEE 5th Int. Conf. Eng. Technol. Appl. Sci. ICETAS 2018, pp. 1–4, 2019, doi: 10.1109/ICETAS.2018.8629198.
[9] E. Saravia, H. C. Toby Liu, Y. H. Huang, J. Wu, and Y. S. Chen, “Carer: Contextualized affect representations for emotion recognition,” Proc. 2018 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018, no. January, pp. 3687–3697, 2020, doi: 10.18653/v1/d18-1404.
[10] S. Sumpeno, “KLASIFIKASI EMOSI UNTUK TEKS BAHASA INDONESIA - Sumpeno - 2009.pdf,” no. c, 2009.
[11] G. Sidorov, “Vector space model,” SpringerBriefs Comput. Sci., pp. 5–10, 2019, doi: 10.1007/978-3-030-14771-6_2.
[12] Imamah and F. H. Rachman, “Twitter sentiment analysis of Covid-19 using term weighting TF-IDF and logistic regresion,” Proceeding - 6th Inf. Technol. Int. Semin. ITIS 2020, pp. 238–242, 2020, doi: 10.1109/ITIS50118.2020.9320958.
[13] A. F. Anees, A. Shaikh, A. Shaikh, and S. Shaikh, “Survey Paper on Sentiment Analysis : Techniques and Challenges,” EasyChair, pp. 2516–2314, 2020.
[14] N. Yadav, O. Kudale, A. Rao, S. Gupta, and A. Shitole, “Twitter Sentiment Analysis Using Supervised Machine Learning,” Lect. Notes Data Eng. Commun. Technol., vol. 57, no. April 2020, pp. 631–642, 2021, doi: 10.1007/978-981-15-9509-7_51.
[15] Q. J. Li. Dan, “Text Sentiment Analysis Based on Long Short-Term Memory.pdf,” pp. 471–475, 2016, doi: 10.1109/CCI.2016.7778967.
[16] L. Kurniasari and A. Setyanto, “Sentiment analysis using recurrent neural network-lstm in bahasa Indonesia,” J. Eng. Sci. Technol., vol. 15, no. 5, pp. 3242–3256, 2020, doi: 10.1088/1742-6596/1471/1/012018.
[17] M. Nurjannah and I. Fitri Astuti, “PENERAPAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) UNTUK TEXT MINING Mahasiswa S1 Program Studi Ilmu Komputer FMIPA Universitas Mulawarman Dosen Program Studi Ilmu Komputer FMIPA Universitas Mulawarman,” J. Inform. Mulawarman, vol. 8, no. 3, pp. 110–113, 2013, doi: 10.30872/jim.v8i3.113.
[18] S. Sarica and J. Luo, “Stopwords in technical language processing,” PLoS One, vol. 16, no. 8 August, pp. 1–13, 2021, doi: 10.1371/journal.pone.0254937.
[19] D. N. Chandra, G. Indrawan, and I. N. Sukajaya, “Klasifikasi Berita Lokal Radar Malang Menggunakan Metode Naive Bayes dengan Fitur N-Gram,” J. Ilm. Teknol. dan Infomasia ASIA, vol. 10, no. 2, pp. 11–19, 2019, doi: 10.23887/jik.v4i2.2772.
[20] A. A. Maarif, “Penerapan Algoritma TF-IDF untuk Pencarian Karya Ilmiah,” Dok. Karya Ilm. | Tugas Akhir | Progr. Stud. Tek. Inform. - S1 | Fak. Ilmu Komput. | Univ. Dian Nuswantoro Semarang, no. 5, p. 4, 2015, [Online]. Available: mahasiswa.dinus.ac.id/docs/skripsi/jurnal/15309.pdf
[21] F. Masri, D. Saepudin, and D. Adytia, “Forecasting of Sea Level Time Series using Deep Learning RNN, LSTM, and BiLSTM, Case Study in Jakarta Bay, Indonesia,” e-Proceeding Eng., vol. 7, no. 2, pp. 8544–8551, 2020.
[22] K. Ivanedra and M. Mustikasari, “Implementasi Metode Reccurrent Neural Network pada Text Summarization dengan Teknik Abstraktif,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, p. 377, 2019, doi: 10.25126/jtiik.2019641067.
[23] R. Cahyadi, A. Damayanti, and D. Aryadani, “Recurrent Neural Network (RNN) dengan Long Short Term Memory (LSTM) untuk Analisis Sentimen data instagram,” J. Inform. dan Komput., vol. 5, no. 1, pp. 1–9, 2020, doi: 10.26798/jiko.v5i1.407.
DOI: 10.30595/juita.v10i2.13262
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2579-8901
- Visitor Stats
View JUITA Stats