Analisis Spasial Tingkat Kerawanan Banjir di Kecamatan Cepu Kabupaten Blora dengan Pendekatan Metode Skoring Berbasis Sistem Informasi Geografis

Authors

  • Joko Handoyo Sekolah Tinggi Teknologi Ronggolawe
  • Anton Yudhana Universitas Ahmad Dahlan
  • Sunardi Universitas Ahmad Dahlan

DOI:

https://doi.org/10.30595/sainteks.v22i1.25180

Keywords:

Banjir, Kecamatan Cepu, SIG, Scoring, Overlay

Abstract

Kecamatan Cepu yang terletak di tepi Sungai Bengawan Solo sering mengalami bencana banjir. Kejadian banjir dapat disebabkan oleh luapan sungai maupun kondisi drainase yang tidak layak akibat bertambahnya jumlah penduduk, penyempitan, dan pendangkalan  saluran serta sampah pada saluran air. Penelitian ini melakukan pemodelan Sistem Informasi Geografis (SIG) dan analisis deskriptif hasil pengolahan data. Pemodelan dilakukan dengan aplikasi ArcGIS 10.8 melalui proses penilaian (scoring) dan tumpang susun (overlay) menggunakan enam variabel indikator yang berkontribusi terhadap bencana banjir, yaitu kemiringan lereng, elevasi lahan, jenis tanah, curah hujan, penggunaan lahan, dan kerapatan sungai. Hasil penelitian disajikan dalam bentuk peta dan tabel kerentanan banjir dengan total seluas 49,04 km2 yang terbagi kedalam lima kategori, yaitu tidak rawan 2,03 km2, agak rawan 22,10 km2, cukup rawan 11,57 km2, rawan 5,50 km2, dan sangat rawan 7,85 km2.

References

Abdul, S. (2021) ‘Buku Pintar Penanggulangan Banjir, Edited by A Hakim’. Diva Press.

Avand, M., Moradi, H. and lasboyee, M.R. (2021) ‘Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability’, Journal of Hydrology, 595. Available at: https://doi.org/10.1016/j.jhydrol.2020.125663.

Baldwin, M.E., Kain, J.S. and Lakshmivarahan, S. (2005) ‘Development of an automated classification procedure for rainfall systems’, Monthly Weather Review, 133(4), pp. 844–862. Available at: https://doi.org/10.1175/MWR2892.1.

Bappeda (2020) ‘Masterplan Drainase Kecamatan Cepu di Kabupaten Blora’. Badan Perencanaan Pembangunan Daerah (BAPPEDA) Kabupaten Blora.

BBWS (2021) ‘Database Informasi SDA BBWS Bengawan Solo 2021’. Unit Data dan Informasi BBWS Bengawan Solo Direktorat Jenderal Sumber Daya Air Kementerian Pekerjaan Umum dan Perumahan Rakyat.

BIG (2017) ‘InaCORS BIG : Satu Referensi Pemetaan Indonesia’. Pusat Jaring Kontrol Geodesi dan Geodinamika Badan Informasi Geospasial.

BPS (2023) ‘Kecamatan Cepu Dalam Angka 2023’. Badan Pusat Statistik Kabupaten Blora.

Danumah, J.H. et al. (2016) ‘Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire)’, Geoenvironmental Disasters, 3(1). Available at: https://doi.org/10.1186/s40677-016-0044-y.

Direktorat Jenderal Cipta Karya (2012) ‘Tata cara penyusunan rencana induk sistem drainase perkotaan’, Direktorat Pengembangan Penyehatan Lingkungan Permukiman, p. 149.

DLH (2022) ‘Kajian Lahan Kritis Kabupaten Blora’. Dinas Lingkungan Hidup Kabupaten Blora.

DORNIK, A., DRĂGUŢ, L. and URDEA, P. (2018) ‘Classification of Soil Types Using Geographic Object-Based Image Analysis and Random Forests’, Pedosphere, 28(6), pp. 913–925. Available at: https://doi.org/10.1016/S1002-0160(17)60377-1.

Drǎguţ, L. and Blaschke, T. (2006) ‘Automated classification of landform elements using object-based image analysis’, Geomorphology, 81(3–4), pp. 330–344. Available at: https://doi.org/10.1016/j.geomorph.2006.04.013.

Ebert, T. et al. (2022) ‘Effective Maps, Easily Done: Visualizing Geo-Psychological Differences Using Distance Weights’, Advances in Methods and Practices in Psychological Science, 5(3). Available at: https://doi.org/10.1177/25152459221101816.

FAO-Unesco (1988) ‘UNESCO soil map of the world’, p. 83. Available at: ISBN 90-6672-057-3.

Halder, T. and Maitra, A. (2020) ‘Multitechnique Rain Classification from Ground-Based Measurements over a Tropical Location’, IEEE Transactions on Geoscience and Remote Sensing, 58(7), pp. 5023–5031. Available at: https://doi.org/10.1109/TGRS.2020.2971504.

Handayani, H.H. et al. (2023) ‘Surface drainage features identification using LiDAR DEM smoothing in agriculture area: a study case of Kebumen Regency, Indonesia’, International Journal of Image and Data Fusion, 14(2), pp. 182–203. Available at: https://doi.org/10.1080/19479832.2022.2076160.

Kusumo, P. and Nursari, E. (2016) ‘Zonasi Tingkat Kerawanan Banjir dengan Sistem Informasi Geografis pada DAS Cidurian Kab. Serang, Banten’, STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 1(1). Available at: https://doi.org/10.30998/string.v1i1.966.

Li, G., Liu, J. and Shao, W. (2022) ‘Flood Risk Assessment Using TELEMAC-2D Models Integrated with Multi-Index Analysis in Shenzhen River Basin, China’, Water (Switzerland), 14(16). Available at: https://doi.org/10.3390/w14162513.

Lin, P. et al. (2021) ‘A new vector-based global river network dataset accounting for variable drainage density’, Scientific Data, 8(1). Available at: https://doi.org/10.1038/s41597-021-00819-9.

Liu, X. et al. (2017) ‘Classifying urban land use by integrating remote sensing and social media data’, International Journal of Geographical Information Science, 31(8), pp. 1675–1696. Available at: https://doi.org/10.1080/13658816.2017.1324976.

Milanesi, L., Pilotti, M. and Ranzi, R. (2015) ‘A conceptual model of people’s vulnerability to floods’, Water Resources Research, 51(1), pp. 182–197. Available at: https://doi.org/10.1002/2014WR016172.

Olii, M.R., Olii, A. and Pakaya, R. (2021) ‘The integrated spatial assessment of the flood hazard using AHP-GIS: The case study of gorontalo regency’, Indonesian Journal of Geography, 53(1), pp. 126–135. Available at: https://doi.org/10.22146/IJG.59999.

Pedersen, A.N., Mikkelsen, P.S. and Arnbjerg-Nielsen, K. (2012) ‘Climate change-induced impacts on urban flood risk influenced by concurrent hazards’, Journal of Flood Risk Management, 5(3), pp. 203–214. Available at: https://doi.org/10.1111/j.1753-318X.2012.01139.x.

Pham, K. et al. (2021) ‘Ensemble learning-based classification models for slope stability analysis’, Catena, 196. Available at: https://doi.org/10.1016/j.catena.2020.104886.

Riyanto, Indelarho, H. and Prinaldi (2009) ‘Pengembangan Aplikasi Sistem Informasi Geografis Berbasis Dekstop dan Web’. Yogyakarta Gava Media.

Safitri, I., Ruhiat, Y. and Saefullah, A. (2023) ‘Analysis of Flood Vulnerability Levels Using Overlay Method With System-Based Scoring Geographical Information (Case Study: District Tangerang)’, Newton-Maxwell Journal of Physics, 4(2), pp. 56–64. Available at: https://doi.org/10.33369/nmj.v4i2.30354.

Der Sarkissian, R. et al. (2022) ‘Land Use Planning to Reduce Flood Risk: Opportunities, Challenges and Uncertainties in Developing Countries’, Sensors, 22(18). Available at: https://doi.org/10.3390/s22186957.

Swain, K.C., Singha, C. and Nayak, L. (2020) ‘Flood susceptibility mapping through the GIS-AHP technique using the cloud’, ISPRS International Journal of Geo-Information, 9(12). Available at: https://doi.org/10.3390/ijgi9120720.

W. Adi, A. et al. (2023) ‘IRBI (Indeks Risiko Bencana Indonesia)’, Badan Nasional Penanggulangan Bencana, 01, pp. 1–338.

Wiraatmaja, M.F. et al. (2024) ‘Flood vulnerability assessment trough overlay-scoring data method based on Geographical Information System (GIS) in Giriwoyo, Wonogiri, Indonesia’, in IOP Conference Series: Earth and Environmental Science. Institute of Physics. Available at: https://doi.org/10.1088/1755-1315/1314/1/012109.

Yaalon, D.H. (1996) ‘Soil classification’, Nature, 380(6569), pp. 31–32. Available at: https://doi.org/10.1038/380031b0.

Yamazaki, D. et al. (2017) ‘A high-accuracy map of global terrain elevations’, Geophysical Research Letters, 44(11), pp. 5844–5853. Available at: https://doi.org/10.1002/2017GL072874.

Downloads

Published

2025-04-25

Issue

Section

Articles