PENGARUH JUMLAH DATA LATIH SVM PADA PERAMALAN BEBAN LISTRIK BULANAN DI SEKTOR INDUSTRI

Authors

  • Luqman Assaffat Program Studi Teknik Elektro, Fakultas Teknik Universitas Muhammadiyah Semarang

DOI:

https://doi.org/10.30595/techno.v17i2.1219

Abstract

Abstrak Peramalanterhadap beban listrik bulanan di industriadalah sangat penting dalam perencanaan dan pengawasan serta monitoring penggunaan listrik di sektor indsutri, sehingga tingkat keakuratan sistem peramalan sangat diperlukan.Suport Vector Machine (SVM) merupakan salah satu metode peramalan yang berbasis kecerdasan buatan dapat memberikan nilai akurasi yang baik, dengan hasil nilai error yang kecil.Sebagai sistem cerdas, SVM memerlukan pelatihan pada sistem nya.Penelitian ini mengkaji pengaruh jumlah data latih yang diberikan pada SVM sebagai metode peramalan beban listrik. Pengujian dilakukan dengan memberikan variabel jumlah data dari 12 data sampai 72 data latih, dan SVM menggunakan fungsi Kernel Gaussian RBF. Hubungan antara jumlah data latih dengan nilai kesalahan peramalan (yang diukur dengan MAPE) dianalisis dengan korelasi Person’s. Penelitian ini menghasilkan nilai Korelasi Person’s r= -0,96 memberikan arti bahwa antara jumlah data latih SVM dengan nilai MAPE yang didapatkan dalam prakiraan SVM terdapat hubungan negatif dengan kekuatan hubungan yang kuat. Kata kunci : Peramalan Beban Listrik, SVM, Data Latih, Korelasi Person’s Abstract Forecasting of the monthly electricity load in the industry is very important in the planning, supervision and monitoring of electric energy use of industrial sector, so the level of forecasting system accuracy is required. Support Vector Machine (SVM) is one forecasting method based on artificial intelligence can give good accuracy, with the result that a small error value. As an intelligent system, SVM requires training on his system. This research is studiedthe influence of training data amount given on SVM as a method of the electrical loadforecasting. Testing of system by given variable amount of data,from 12 datas to 72 datas, and SVM using the Gaussian kernel function of RBF. The relationship between the amount of training data with forecasting error value (as measured by MAPE) was analyzed by Person's correlation. This research resulted in the value of Person's correlation r = -0.96 gives conclusion that the amount of training data SVM with MAPE values obtained in the forecast SVM negative associations with the strength of relationship Key-word: forecasting, Electric Load, SVM, Train Data, Person’s Correlation

References

Biegel, John E., 1999, Pengendalian Produksi Suatu Pendekatan Kuantitatif, Akademika Presindo, Jakarta.

Cristianini N., Taylor J.S., 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge Press University, 2000

Hahn, H., Nieberg, S.M., Pickl, S., 2009 , Electric Load Forecasting Methods: Tools for Decision Making, European Journal of Operational Research 199, 902–907

Hong, W.C., 2009, Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model, Energy Conversion and Management, 50, 105–117

Maali, Y., Al-Jumaily, A., 2013, Self-Advising Support Vector Machine, Knowledge-Based Systems 52, 214–222.

Makridakis, Spyross, Steven C., Whellwright, Victore Mcgee, Untung Sus Adriyanto, Abdul Basith, 1988, Metoda dan Aplikasi Peramalan, Jilid Satu Edisi Kedua, Erlangga.

Misbahuddin, Hasan, I., 2013, Analisis Data Penelitian dengan Statistik, Bumi Aksara, Jakarta

Vapnik, V.N., 1999, The Nature of Statistical Learning Theory 2nd edition, Springer-Verlag, New York Berlin Heidelberg

Downloads

Published

2017-03-14