Barium Ferrite Magnet As Anti-Radar Material

Authors

  • Mohamad Ikhsan Nurulloh Universitas Pertahanan Republik Indonesia
  • Luhut Simbolon Universitas Pertahanan Republik Indonesia
  • George Royke Deksino Universitas Pertahanan Republik Indonesia

DOI:

https://doi.org/10.30595/techno.v23i1.12407

Abstract

This article discusses barium ferrite magnets and their potential use as anti-radar materials for stealth technology in Indonesia. This study uses a variety of literature and the latest research results. Stealth technology was developed by creating an anti-radar substance capable of absorbing radar signals known as radar absorbing material. According to the literature review findings, barium ferrite-based magnets have the potential to be raw materials for radar wave absorbers since they absorb microwaves, including the frequency of waves utilized in radar. The magnetic characteristics and ability of barium ferrite magnets to absorb radar waves are affected by various conditions, including chemical and organic components. Barium ferrite magnets have been used as anti-radar materials in the military, in ships, aircraft, land vehicles, and clothing. The potential of barium ferrite as a determinant for modern military technology in Indonesia is considerable, but it is still limited in laboratory research. The Indonesian government can acquire stealth technology by implementing a dual-use technology strategy and a triple helix innovation model.

References

[1] A. Ghasemi, A. Hossienpour, A. Morisako, X. Liu, and A. Ashrafizadeh, “Investigation of The Microwave Absorptive Behavior of Doped Barium Ferrites,” Mater. Des., vol. 29, no. 1, pp. 112–117, Jan. 2008, doi: 10.1016/j.matdes.2006.11.019.

[2] D. L. Zhao, J. M. Zhang, X. Li, and Z. M. Shen, “Electromagnetic and Microwave Absorbing Properties of Co-filled Carbon Nanotubes,” J. Alloys Compd., vol. 505, no. 2, pp. 712–716, 2010, doi: 10.1016/j.jallcom.2010.06.122.

[3] D. Sert and A. Mergen, “Production of Nanoscale Ba(Zn1/3Nb2/3)O3 Microwave Dielectric Ceramics by Polymerised Complex Method,” J. Alloys Compd., vol. 482, no. 1–2, pp. 396–399, 2009, doi: 10.1016/j.jallcom.2009.04.031.

[4] P. K. Varshney and R. Viswanathan, “Communications, Radar, and Wireless Sensor Networks, Detection in,” Wiley StatsRef Stat. Ref. Online, pp. 1–20, 2016, doi: 10.1002/9781118445112.stat00171.pub2.

[5] I. Nicolaescu, “Radar Absorbing Materials Used for Target Camouflage,” J. Optoelectron. Adv. Mater., vol. 8, no. 1, pp. 333–338, 2006.

[6] C.-G. K. Won-Jun L, Sang-Eui L, “Tensile & Electrical Properties of Polypyrrole/Epoxy Composites for Radar Absorbing Materials,” Fukugo Zair. Shinpojiumu Koen Yoshishu, vol. 1, no. 30, pp. 25–26, 2005.

[7] A. A. Hebeish, M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, “Factors Affecting the Performance of the Radar Absorbant Textile Materials of Different Types and Structures,” Prog. Electromagn. Res. B, vol. 3, no. 1, pp. 219–226, 2008, doi: 10.2528/pierb07121702.

[8] P. Saville, T. Huber, and D. Makeiff, Fabrication of Organic Radar Absorbing Materials, Technical., no. May. Canada: Defence Research and Development Canada Atlantic, 2005.

[9] Priyono and A. Manaf, “Material Magnetik Barium Heksaferit Tipe-M Untuk Material Anti Radar Pada Frekuensi S-Band,” J. Sains Mater. Indones., vol. 11, no. 2, pp. 75–78, 2010.

[10] P. Irasari and N. Idayanti, “Aplikasi Magnet Permanen BaFe12 O19 dan NdFeB Pada Generator Magnet Permanen Kecepatan Rendah Skala Kecil,” Indones. J. Mater. Sci., vol. 11, no. 1, pp. 38–41, 2009.

[11] E. Handoko, I. Sugihartono, S. Budi, M. Randa, Z. Jalil, and M. Alaydrus, “The Effect of Thickness on Microwave Absorbing Properties of Barium Ferrite Powder,” J. Phys. Conf. Ser., vol. 1080, no. 1, 2018, doi: 10.1088/1742-6596/1080/1/012002.

[12] S. Kanagesan, M. Hashim, S. Jesurani, T. Kalaivani, and I. Ismail, “Influence of Zn-Nb on the Magnetic Properties of Barium Hexaferrite,” J. Supercond. Nov. Magn., vol. 27, no. 3, pp. 811–815, 2014, doi: 10.1007/s10948-013-2357-3.

[13] R. Wicaksono, A. Yulianto, and Sulhadi, “Pembuatan dan Karakterisasi Magnet Komposit Berbahan Dasar Barium Ferit dengan Pengikat Karet Alam,” J. Sains Dasar, vol. 2, no. 1, pp. 79–84, 2013.

[14] M. I. Alif, “Komposit Barium Ferit dengan Pengikat Kaca Cult,” Unnes Phys. J., vol. 1, no. 1, pp. 37–40, 2012.

[15] P. Jatiutoro and A. Yulianto, “Fabrikasi dan Karakterisasi Magnet Komposit Barium Heksaferit dengan Binder Semen Portland,” J. Sains Mater. Indones., vol. Edisi Khus, no. 1, pp. 167–169, 2007.

[16] A. Y. Sari, C. H. Safira, E. A. Setiadi, S. Simbolon, C. Kurniawan, and P. Sebayang, “Efek Aditif FeMo dan Proses Kalsinasi Pada Serbuk Magnetik BaFe12O19,” J. Sains Mater. Indones., vol. 18, no. 3, p. 95, 2018, doi: 10.17146/jsmi.2017.18.3.4112.

[17] R. R. Astari, F. Arifiadi, H. S. Kuncoro, and T. Kristiantoro, “Pengaruh Doping Ion Mn Terhadap Karakteristik Magnet Barium Ferit,” J. Keramik dan Gelas Indones. Vol., vol. 28, no. 2, pp. 123–131, 2019.

[18] N. Idayanti, T. Kristiantoro, A. Septiani, and I. Kartika, “Magnetic Properties of Barium Ferrite After Milling by High Energy Milling (HEM),” MATEC Web Conf., vol. 101, no. 1, pp. 10–14, 2017, doi: 10.1051/matecconf/201710101011.

[19] S. Suprapedi, “Pengaruh Komposisi Aditif MgO pada Ba-Ferit [BaFe12O19] Terhadap Sifat Magnetik & Struktur Kristal,” Pist. J. Tech. Eng., vol. 4, no. 2, pp. 82–86, 2021, doi: 10.32493/pjte.v4i2.9634.

[20] E. Handoko and S. Budi, “Pengaruh Ukuran Partikel Terhadap Sifat Kemagnetan Material Magnet Komposit BaFe 12 O 19 / α Fe,” vol. 3, no. 2, 2013.

[21] M. I. Ramadhan, W. Widanarto, and S. Sunardi, “Pengaruh Temperatur Sintering Terhadap Struktur dan Sifat Magnetik Ni2+- Barium Ferit sebagai Penyerap Gelombang Mikro,” J. Teras Fis., vol. 1, no. 1, p. 23, 2018, doi: 10.20884/1.jtf.2018.1.1.567.

[22] G. Gultom, M. Rianna, P. Sebayang, and M. Ginting, “The Effect of Mg-Al Binary Doped Barium Hexaferrite for Enhanced Microwave Absorption Performance,” Case Stud. Therm. Eng., vol. 18, no. 1, p. 100580, 2020, doi: 10.1016/j.csite.2019.100580.

[23] B. Zohuri, Radar Energy Warfare and the Challenges of Stealth Technology. Albuquerque: Springer, 2020.

[24] J. Lim, Introduction to Aerospace Materials, vol. 55, no. 7. Cambridge: Woodhead Publishing Limited, 2012.

[25] N. Banga, “Research Article Research on Stealth Aircraft and Its Effect on Radar System in Modern Warfare,” Int. J. Curr. Res., vol. 9, no. 08, pp. 55654–55658, 2017.

[26] S. Wei, R. Yan, B. Shi, and X. Chen, “Characterization of Flexible Radar-absorbing Materials Based on Ferromagnetic Nickel Micron-Fibers,” J. Ind. Text., vol. 49, no. 1, pp. 58–70, 2019, doi: 10.1177/1528083718772304.

[27] A. Septiani, “Pabrikasi Magnet MnZn Ferit dan Barium Ferit dari Limbah Pengelasan Fabrication of MnZn Ferrite and Barium Ferrite using Welding Waste,” J. Elektron. dan Telekomun., vol. 15, no. 1, pp. 15–17, 2015.

[28] E. Maryania, T. Ramadhanb, and H. Damayanti, “Studi Awal Pemanfaatan Limbah Lumpur Pengolahan Ilmenit Sebagai Bahan Magnet,” J. Keramik dan Gelas Indones., vol. 26, no. 1, pp. 52–60, 2017.

[29] N. D. Jayanti, A. Yulianto, and Sulhadi, “Fabrikasi Magnet Komposit Berbahan Dasar Magnet Daur Ulang Dengan Pengikat Cult,” Unnes Phys. J., vol. 2, no. 1, pp. 24–29, 2013.

[30] K. Yusro and M. Zainuri, “Karakterisasi Material Penyerap Gelombang Radar Berbahan Dasar Karbon Aktif Kulit,” J. Sains Dan Seni Its, vol. 5, no. 2, pp. 1–4, 2016.

[31] A. Setiawan, W. Widanarto, and M. Effendi, “Penyerap Gelombang Mikro Berbasis Neodimium Barium Ferit Berbahan Dasar Pasir Besi Binangun Cilacap,” J. Fis., vol. 7, no. 1, pp. 1–4, 2017, [Online]. Available: https://journal.unnes.ac.id/nju/index.php/jf/article/view/13361.

[32] M. Rizki, A. Budiman, and D. Puryanti, “Barium Ferit ( BaFe 12 O 19 ) Pasir Besi Batang Sukam Kabupaten Sijunjung Sumatera Barat,” J. Fis. Unand, vol. 7, no. 1, pp. 15–20, 2018.

[33] R. Hayati, A. Budiman, and D. Puryanti, “Karakterisasi Suseptibilitas Magnet Barium Ferit yang Disintesis dari Pasir Besi dan Barium Karbonat Menggunakan Metode Metalurgi Serbuk,” J. Fis. Unand, vol. 5, no. 2, pp. 187–192, 2016, doi: 10.25077/jfu.5.2.187-192.2016.

[34] S. Zubair, M. W. Kurniawan, and Z. R. Mubarokah, “Komposit Material Penyerap Radiasi Gelombang Infrared Berbasis Mangan Barium Ferit,” Orbital Chem. J., vol. 01, no. 02, pp. 43–47, 2019.

[35] H. S. Kuncoro, N. Sulistarihani, and R. J. Manulang, “Sifat Densitas dan Kemagnetan Barium Ferit dari Partikel Nano BaFe12O19 yang Disintesis Menggunakan Metode Emulsi Mikro,” J. Keramik dan Gelas Indones., vol. 1, pp. 61–71, 2015.

[36] D. C. A. D. Harpini, M. F. J. Saputra, and M. D. Ally, “Transformasi Dalam Performa Pesawat Terbang Di Generasi Berbeda,” Bina Tek., vol. 13, no. 1, pp. 131–138, 2017, doi: 10.54378/bt.v13i1.63.

[37] E. T. Susdarwono, “Ekonomi Industri Pertahanan : Konsep Dual-Use Technologies ( Spin On & Spin Off ) Sebagai Upaya Percepatan Kemandirian Industri Pertahanan Indonesia,” Ecoducation, vol. 3, no. 2, pp. 135–153, 2021.

[38] R. D. Wibowo, “Permasalahan Dalam Mewujudkan Kemandirian Industri Pertahanan,” J. Defendonesia, vol. 1, no. 2, pp. 43–48, 2016.

Downloads

Published

2022-04-27