Prototyping an All-terrain Capable Mars Rover as Robotic Platform for Field Exploration towards Smart Agriculture

Authors

  • Abqori Aula Universitas Tanjungpura
  • Syaifurrahman
  • Fitriah

DOI:

https://doi.org/10.30595/techno.v26i1.21816

Abstract

Robot rover penjelajah milik NASA terutama terkenal karena kemampuannya dalam menjelajahi permukaan kasar dan tak rata pada Planet Mars. Sistem suspense utama pada rover menjadi atraksi bagi para peminat robot dikarenakan rancangan yang sederhana namun efektif, yang disebut sistem rocker-bogie. Sejak peluncurannya, sistem suspense ini telah ditelaah, dijelajahi, dan dikembangkan untuk tujuan dan penerapan yang berbeda-beda. Artikel ini mengusulkan perancangan dan pengembangan wahana robot yang memanfaatkan kemampuan rover Mars yang disebutkan tadi, untuk menjelajahi permukaan lahan pertanian yang tak rata yang sering ditemukan di area sekitar. Robot yang diusulkan memiliki 6 roda penggerak semua. Dengan menggunakan wahana robot dengan 6 roda ini, sistem yang diusulkan ditugaskan untuk menjelajahi lahan pertanian secara otomatis. Wahana ini juga bisa ditugaskan untuk berbagai tujuan, seperti inspeksi tanah, memeriksa cuaca, pemetaan secara umum, dan pengambilan sampel. Beberapa purwarupa telah dirancang dan dibangun untuk menguji kemampuan jelajah, daya tamping sensor, dan juga perangkat elektronik dan kelistrikan. Hasil uji awal menunjukkan bahwa wahana robot dapat bekerja dengan baik dalam menjelajahi permukaan takrata dan mampu mengakomodasi berbagai jenis sensor, baik yang ditempatkan didalam selungkupnya ataupun yang ditempatkan pada lengan robot

References

A. Bechar and C. Vigneault, “Agricultural robots for field operations: Concepts and components,” Biosystems Engineering, vol. 149, pp. 94-111, 2016.

N. Noguchi, “Agricultural Vehicle Robot,” Journal of Robotics and Mechatronics, vol. 30, no. 2, pp. 165-172, 2018.

S. G. Vougioukas, “Agricultural Robotics,” Annu. Rev. Control Robot. Auton. Syst., vol. 2, pp. 15.1 - 15.28, 2019.

L. Nobrega, P. Goncalves, P. Pedreiras and J. Pereira, “An IoT-Based Solution for Intelligent Farming,” Sensors, vol. 19, no. 603, 2019.

G. Ren, T. Lin, Y. Ying, G. Chowdhary and K. C. Ting, “Agricultural robotics research applicable to poultry production: A review,” Computers and Electronics in Agriculture, vol. 169, 2020.

F. B. Malavazi, R. Guyonneau, J.-B. Fasquel, S. Lagrange and F. Mercier, “LiDAR-only based navigation algorithm for an autonomous agricultural robot,” Computers and Electronics in Agriculture, vol. 154, pp. 71-79, November 2018.

A. Khan, S. Aziz, M. Bashir and M. U. Khan, “IoT and Wireless Sensor Network based Autonomous Farming Robot,” in International Conference on Emerging Trends in Smart Technologies, Karachi, 2020.

D. Reiser, V. Nannen, G. Hubel and H. W. Griepentrog, “Design, modelling and control of a novel agricultural robot with interlock drive system,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019.

J. Cremona, R. Comelli and T. Pire, “Experimental evaluation of Visual-Inertial Odometry systems for arable farming,” Journal of Field Robotics, vol. 39, no. 7, p. 1121–1135, 2022.

S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. H. Santos and E. Pekkeriet, “Agricultural Robotics for Field Operations,” Sensors, vol. 20, no. 9, 2020.

S. Eiffert, N. D. Wallace, H. Kong, N. Pirmarzdashti and S. Sukkarieh, “A Hierarchical Framework for Long-term and Robust Deployment of Field Ground Robots in Large-Scale Farming,” in 16th IEEE International Conference on Automation Science and Engineering, 2020.

F. Rubio, F. Valero and C. Llopis-Albert, “A review of mobile robots: Concepts, methods, theoretical framework, and applications,” International Journal of Advanced Robotic Systems, pp. 1-22, 2019.

F. A. A. Cheein and R. Carelli, “Agricultural Robotics: Unmanned Robotic Service Units in Agricultural Tasks,” IEEE Industrial Electronics Magazine, pp. 48-58, September 2013.

L. Droukas, Z. Doulgeri, N. L. Tsakiridis, D. Triantafyllou, I. Kleitsiotis, I. Mariolis, D. Giakoumis, D. Tzovaras, D. Kateris and D. Bochtis, “A Survey of Robotic Harvesting Systems and Enabling Technologies,” J Intell Robot Syst, vol. 107, no. 21, pp. 1-29, 2023.

T. Duckett, S. Pearson, S. Blackmore and B. Grieve, Agricultural Robotics, EPSRC UK-RAS Network, 2018.

J. E. Taylor and D. Charlton, Eds., “Robots in the Fields,” in The Farm Labor Problem, Academic Press, 2019, pp. 205-225.

“The Mars Rovers,” 23 March 2021. [Online]. Available: https://spaceplace.nasa.gov/mars-rovers/en/. [Accessed 1 August 2023].

M. Woodall, G. Baechler, I. Salehinia and N. A. Pohlman, “Mars Rover Rocker-Bogie Comparative Differential Study,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 9, no. 4, pp. 1874-1887, 2020.

P. B. Saraiya, “Design of Rocker Bogie Mechanism,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 8, pp. 1544-1550, 2020.

S. Noble and I. K. Kurien, “An improved formulation for optimizing rocker-bogie suspension rover for climbing steps,” Journal of Mechanical Engineering Science, 2019.

S. Seralathan, A. Bagga, U. K. Ganesan, V. Hariram, T. M. Premkumar and S. Padmanabhan, “Static structural analysis of wheel chair using a rocker bogie mechanism,” Materials Today: Proceedings, 2020.

M. Naeem, A. Ahmed, F. Ayman, M. Ahmed, A. Adel, Y. Amr and M. Ashraf, “Autonomous Delivery Rocker-Bogie Robot Using Gmapping Based SLAM Algorithm,” International Research Journal of Engineering and Technology, pp. 1608-1619, 2022.

H. Nayar, J. Kim, B. Chamberlain-Simon, K. Carpenter, M. Hans, A. Boettcher, G. Meirion-Griffith, B. Wilcox and B. Bittner, “Design optimization of a lightweight rocker-bogie rover for ocean worlds applications,” International Journal of Advanced Robotic Systems, pp. 1-20, 2019.

G. D. Nusantoro, M. A. Muslim, Poerwanto, and M. Yusuf Z., “Implementasi Sensor Kamera CMUCAM3 pada Mobile Robot Line Tracer,” Techno, vol. 12, no. 1, pp. 25-32, 2011.

Downloads

Published

2025-06-13