ABSTRAKSI

Dalam masa krisis moneter seperti saat ini diharapkan adanya peningkatan pertumbuhan ekonomi yang dapat meningkatkan kegiatan pembangunan proyek konstruksi. Pekerjaan beton bertulang khususnya pada pekerjaan penulangan memegang peranan yang sangat penting pada suatu proyek konstruksi sehingga sangat berpengaruh terhadap biaya pelaksanaan proyek. Penelitian ini bertujuan untuk mengetahui penyimpangan volume tulangan yang terjadi pada pekerjaan beton bertulang antara perencanaan dengan realisasi di lapangan.

Metode yang digunakan untuk mengetahui penyimpangan volume tulangan itu adalah meneliti diameter tulangan dan panjang tulangan yang terpasang di lapangan dengan yang ada dalam gambar perencanannya pada suatu proyek maka didapat volume tulangan rencana dan volume tulangan di lapangan. Dari data penelitian itu dapat diketahui penyimpangan volume tulangan antara volume tulangan yang terpasang di lapangan dengan volume rencana. Persentase penyimpangan diketahui dalam bentuk berat tulangan agar dapat mengetahui pengaruhnya terhadap biaya. Penelitian ini dilakukan pada tiga buah proyek konstruksi, dengan melakukan penelitian pada pekerjaan penulangan balok, penulangan pelat lantai, dan penulangan kolom dalam satu lantai.

Dari penelitian ini didapatkan hasil penyimpangan pada diameter tulangan, rencana lebih besar dari pelaksanaan yaitu untuk P8 mm, P10 mm, P12 mm, D13 mm, D16 mm, D19 mm, D22 mm, D25 mm, berkisar antara 0.882% sampai 11.840%. Untuk panjang tulangan terdapat kecenderungan penyimpangan, panjang tulangan rencana lebih pendek dari panjang tulangan pelaksanaan yaitu berkisar antara 0.442% sampai 15.234%. Untuk berat tulangan pelaksanaan yaitu berkisar antara 1.415% sampai 7.211%. Untuk biaya tulangan riil terdapat penyimpangan, rencana lebih besar dari pelaksanaan yaitu berkisar antara 3.18% sampai 11.33%.

BABI

PENDAHULUAN

1.1. Latar Belakang Masalah

Masa krisis moneter seperti sekarang ini pembangunan konstruksi khususnya pada proyek bangunan gedung diharapkan dapat terus berjalan agar pertumbuhan ekonomi mengalami peningkatan. Dengan adanya peningkatan pertumbuhan ekonomi diharapkan kegiatan pembangunan proyek konstruksi secara umum juga mengalami peningkatan.

Pekerjaan beton bertulang pada suatu proyek konstruksi bangunan gedung bertingkat memegang peranan yang sangat penting karena akan menelan biaya yang paling besar yaitu sekitar 30%-40% dari biaya proyek secara keseluruhan jika dibandingkan dengan pekerjaan yang lainnya. Sedangkan untuk pekerjaan penulangannya sendiri menelan biaya \pm 30% dari seluruh biaya pada pekerjaan beton bertulang. Karena peranannya yang besar tersebut apabila terjadi pembengkakan biaya pelaksanaan, maka akan sangat berpengaruh terhadap biaya proyek secara keseluruhan.

Dasar dari diadakannya penelitian pada pekerjaan struktur beton bertulang ini yaitu dengan adanya diameter tulangan dipasaran lebih kecil dari diameter tulangan yang ditawarkan produsen dan akan berpengaruh terhadap volume tulangan sehingga menyebabkan kerugian bagi kontraktor serta pemilik proyek (owner). Selain itu volume tulangan dalam pelaksanaan di lapangan juga dipengaruhi oleh hasil dari pemotongan tulangan, pembengkokan tulangan, dan

cara pemasangan tulangan, jadi volume pelaksanaan pekerjaan beton bertulang belum tentu sesuai dengan yang direncanakan, namun hal tersebut diperbolehkan jika masih dalam toleransi persyaratan yang berlaku.

Dengan adanya perbedaan antara pekerjaan perencanaan dengan realisasi di lapangan dapat menyebabkan terjadinya perubahan biaya proyek pada waktu pelaksanaan. Perubahan biaya tersebut harus dapat diantisipasi oleh kontraktor pada waktu melakukan penawaran tender dengan menambahkan prosentase toleransi pada harga satuan.

Untuk itu penelitian studi tentang pengaruh toleransi pekerjaan penulangan pada kolom, balok, pelat lantai antara perencanaan dengan realisasi di lapangan terhadap biaya dilakukan, berdasarkan uraian seperti di atas maka penulis mengambil judul tentang, "Studi Komparasi Pada Pekerjaan Beton Bertulang Antara Perencanaan Dengan Realisasi Di Lapangan Serta Pengaruhnya Terhadap Biaya."

1.2. Pokok Masalah

Sehubungan dengan sering terjadinya penyimpangan volume tulangan dalam pekerjaan beton bertulang di proyek bangunan gedung pada diameter tulangan, dan panjang tulangan yang digunakan maka hal ini menimbulkan pemikiran untuk meneliti tingkat penyimpangan pada volume tulangan yang terjadi.

1.3. Tujuan Penelitian

Tujuan yang ingin dicapai dari penelitian ini adalah mendapatkan besarnya persentase penyimpangan volume tulangan dan biaya pada pekerjaan beton bertulang antara perencanaan dengan pelaksanaan di lapangan.

1.4. Manfaat

Manfaat yang dapat diperoleh pada penelitian ini adalah:

- Mengetahui besarnya persentase toleransi pekerjaan penulangan sehingga bisa dijadikan acuan oleh kontraktor pada penyusunan RAB (Rencana Anggaran Biaya) penawaran pada tender proyek selanjutnya.
- 2) Dapat mengetahui berapa besar keuntungan atau kerugian secara finansial yang dialami oleh pelaksana (kontraktor) yang disebabkan oleh perbedaan antara perencanaan dan pelaksanaan pada volume tulangan yang diketahui dari persentase toleransi.

1.5. Batasan Masalah

Batasan masalah yang digunakan dalam penyusunan penelitian ini adalah :

- Studi kasus pada tiga buah proyek bangunan gedung yang ada di Daerah Istimewa Yogyakarta.
- Penelitian dilakukan pada pekerjaan penulangan di pekerjaan kolom, balok dan pelat lantai.
- 3) Pengambilan sampel dilakukan pada semua jenis pekerjaan dalam satu lantai.

- 4) Pada pekerjaan yang se-tipe diambil tiga sampel untuk diteliti, sedangkan untuk tipe pekerjaan yang jumlahnya satu maka diteliti satu persatu.
- 5) Tampang tulangan dianggap seperti lingkaran untuk tulangan polos.
- 6) Satu batang tulangan dianggap mempunyai diameter yang seragam.
- 7) Untuk menentukan diameter tulangan deform di lapangan, diambil tiga sampel tiap diameter yang digunakan pada satu proyek.
- 8) Volume bendrat tidak diperhitungkan dengan volume tulangan.
- 9) Hasil penyimpangan volume tulangan yang didapat dalam bentuk persentase.

1.6. Sistimatika Penulisan

Laporan Penelitian ini ditulis dalam 6 bab dan lampiran dengan rincian sebagai berikut :

BAB I Pendahuluan

BAB II Tinjauan Pustaka

BAB III Landasan Teori

BAB IV Metode Penelitian

BAB V Pengumpulan Data dan Pembahasan

BAB VI Kesimpulan dan Saran

Daftar Pustaka

Lampiran

BAB II

TINJAUAN PUSTAKA

2.1 Struktural Beton Bertulang

Beton bertulang adalah bahan yang sangat luas digunakan untuk sistemsistem konstruksi. Beton didapat dari campuran bahan-bahan yaitu semen, pasir, kerikil, dan air sebagai bahan pembantu dalam reaksi kimia selama proses pengerasan. Dapat juga ditambah additive dalam adukan untuk tujuan tertentu. Beton kuat terhadap tekan, tetapi lemah terhadap tarik. Oleh sebab itu sebagai penguatan tarik dan geser harus diberikan tulangan pada daerah tarik penampang beton, hal ini dilakukan agar beton dapat digunakan untuk komponen struktur yang terdapat gaya tarik dan tekan secara bersamaan.

Masyarakat awam pada umumnya kurang paham dan bahkan seakan akan kurang/ tidak peduli bahwa besi tulangan yang dipakai untuk kosntruksi tersebut harus memenuhi standar spesifikasi yang ditetapkan dari PUBI, SNI atau bahkan ASTM. Sehingga dimungkinkan besi tulangan yang ada di pasaran itu dengan anggapan asal murah akan dibeli dan dipakainya tanpa mengetahui asal-usul serta karakteristik fisik dan mekaniknya. Hal ini bisa membahayakan struktur terhadap keruntuhan yang terjadi terutama akibat beban gempa. Kenyataannya menunjukkan bahwa pemakaian beton sebagai bahan bangunan selalu meningkat baik volume maupun kwalitasnya. Dalam melakukan analisis, para ahli telah mengambil beberapa penyederhanaan agar proses analisis maupun disain dapat

dilakukan dengan relatif mudah.

Tabel 2.1. Data Hasil Penelitian Pada Tiap Diameter Tulangan

Diameter Tulangan standar yang ditawarkan Produsen	Diameter Tulangan di Pasaran yang terukur Paling Banyak	Selisih Diameter Tulangan
6 mm	5,5 mm	0,5 mm
8 mm	7,4 mm	0,6 mm
10 mm	9,2 mm	0,8 mm
12 mm	10,1 mm	1,9 mm
	10,3 mm	1,7 mm

Distribusi pasar dengan diameter berdimensi standar SII atau lebih besar jarang sekali ada atau bahkan sama sekali tidak ada. Diameter dengan dimensi lebih besar akan masuk dalam kategori dimensi diameter di atasnya/ selalu dilakukan pembulatan ke atas. (Hendri Rahmanto dan Nuri Sriharjo).

2.2 Kenaikan Biaya Proyek

Berdasarkan penelitian pada proyek:

Nama Proyek : FLOUR MILLS SRIBOGA RATU RAYA

(FINISHING)

Pemilik : PT SRI BOGA RR

Konsultan MK : PT GUNAWAN CIPTA ARSINDO

Kontraktor Utama : PT WASKITA KARYA

Fungsi Bangunan : Pabrik

Tipe Struktur : Beton Bertulang

Jumlah Lantai : 11 lantai

Luas Lantai : <u>+</u> 12.000

Kenaikan biaya total pada akhir proyek ini jika dibandingkan dengan RAP

adalah 31.29% dengan item kenaikan paling besar.

Tabel 2.3. Persentase Kenaikan Biaya Proyek Pada Tiap Pekerjaan

No	Nama Item Pekerjaan	Besar Kenaikan (%) yang disebabkan Item ini
1.	Beton praktis	4,19 %
2.	Penulangan beton	2,56%
3.	Lantai keramik 30/30	0,93%
4.	Cat tembok luar	4,30%
5.	Plesteran 1: 4	3,75%
6.	Kusen jati	2,12%
7.	Finishing	6,78%
8.	Perancah	4,29%
9.	Perbaikan pekerjaan	3,28%

(Erina dan Wisnungkoro)

BAB III

LANDASAN TEORI

2.1 Umum

Proyek konstruksi adalah proyek yang berkaitan dengan upaya pembangunan infrastruktur, yang umumnya mencakup pekerjaan pokok yang termasuk dalam bidang teknik sipil dan arsitektur. Dalam rangka pengendalian dan pengawasan terhadap pelaksanaan proyek dibutuhkan sesuatu media atau alat yang mampu merangkum informasi-informasi yang harus secara aktif diketahui, diikuti, dan diamati selama pelaksanaan. (Istimawan Dipohusodo, Manajemen Proyek dan Konstruksi Jilid I).

2.1 Tulangan Baja

Baja beton adalah suatu baja paduan yang terutama terdiri dari persenyawaan unsur besi (Fe) dan unsur logam lain, misalnya: mangan (Mn), tembag (Cu), vanadium (V), niobium (Nb) serta non logam seperti karbon (C), silisium (Si), fosfor (P), dan belerang (S). Sifat-sifat dari baja sangat tergantung dari kadar karbon. Disebabkan kadar karbon yang sedikit saja telah cukup mengubah besi lunak dan liat menjadi mekanisasi keseluruhan yang lain. Makin tinggi kadar karbon, semakin kuat dan semakin keras serta semakin kurang liat. (Ahmad Antono)

Kadar karbon dipakai juga sebagai petunjuk untuk membedakan antara


besi tuang dan baja.

- a) Besi tuang dengan kadar karbon $\geq 2\%$ dinamakan besi tuang
- b) Besi dengan kadar karbon 2% dinamakan baja

Besi tuang pada umumnya getas dan mempunyai titik lebur yang lebih rendah (sekitar 1150°C, kadar karbon 4%)

Pabrikasi baja beton dapat diskemakan sebagai berikut :

- 1. Biji besi
 - Proses tanur tinggi
- 2. Besi kasar (mentah)dan/ atau serpih tua

3. Baja

4. Baja beton

Berdasarkan bentuknya baja tulangan terdiri dari baja tulangan polos (Bj. TP) dan baja tulangan deform/ sirip (Bj.TD). Baja tulangan polos merupakan batang baja yang permukaannya licin, sedangkan baja tulangan deform merupakan batang dengan bentuk permukaan khusus untuk mendapatkan peletakan (bonding) pada beton yang lebih baik dari pada baja tulangan polos dengan luas penampang yang sama. Jenis-jenis baja tulangan deform (PUBI-1982):

- a) Batang baja tulangan bersirip teratur
- b) Batang baja tulangan yang dipuntir

Variabel-variabel penyimpangan pekerjaan penulangan pada beton

bertulang diantaranya adalah:

3.2.1 Diameter Tulangan

Diameter tulangan adalah jarak melintang penampang dari sisi satu kesisi lainnya pada batang baja tulangan. Untuk baja tulangan deform jarak antara dua sirip melintang tidak boleh lebih dari 0,7 d dan tinggi sirip tidak boleh kurang dari 0,05 d. Berdasarkan Persyaratan Umum Bahan Bangunan di Indonesia 1982 baja tulangan polos dengan baja tulangan deform mempunyai luas tampang yang sama. Diameter tulangan yang ada di pasaran biasanya lebih kecil dari diameter tulangan yang ditawarkan produsen.

Tabel 3.1. Luas Tampang Baja Tulangan

	Penamaan Diameter Baja Tulangan			Luce ponempena
Polos	Diameter nominal (mm)	Deform	Diameter nominal (mm)	Luas penampang (cm2)
P6	6	D6	6	0,283
P8	8	D8	8	0,503
P9	9	D9	9	0,636
P10	10	D10	10	0,785
P12	12	D12	12	1,13
P13	13	D13	13	1,33
P14	14	D14	14	1,54
P16	16	D16	16	2,01
P18	18	D18	18	2,54
P19	19	D19	19	2,84
P20	20	D20	20	3,14
P22	22	D22	22	3,80
P25	25	D25	25	4,91
P28	28	D28	28	6,16
P32	32	D29	29	6,61
		D32	32	8,04
		D36	36	10,2
		D40	40	12,6
		D50	50	19,6

Tabel 3.2. Penyimpangan Yang Diijinkan Dari Diameter Nominal Menurut PUBI-1982

Diameter Tulangan	Toleransi
Sampai dengan 14 mm	<u>+</u> 0,4 mm
16 mm s/d 25 mm	<u>+</u> 0,5 mm
28 mm s/d 34 mm	<u>+</u> 0,6 mm
36 mm s/d 50 mm	+ 0,8 mm

3.2.2 Panjang Tulangan

Perbedaan panjang tulangan antara rencana dengan realisasi di lapangan mengakibatkan perbedaan volume kebutuhan tulangan. Biasanya panjang tulangan rencana lebih kecil dibandingkan panjang tulangan realisasi di lapangan. Penyimpangan yang diijikan terhadap panjang total batang lurus dan batang yang dibengkokkan ditetapkan toleransi penyimpangan sebesar ± 6 mm untuk jarak 60 cm atau kurang dan sebesar 12 mm untuk jarak lebih dari 60 cm (Peraturan Beton Bertulang Indonesia 1971 N.I-2)

3.2.3 Berat Tulangan

Berat tulangan didapat dari perkalian antar berat nominal persatuan panjang dengan diameter tulangan. Perbedaan antara diameter tulangan rencana dengan diameter tulangan realisasi di lapangan mengakibatkan berbedanya berat nominal persatuan panjang.

Tabel 3.3. Berat Nominal Tulangan

	Penamaan Diai	`ulangan	Berat Nasional	
Polos	Diameter nominal (mm)	Deform	Diameter nominal (mm)	Persatuan Panjang (Kg/m)
P6	6	D6	6	0,222
P8	8	D8	8	0,395
P9	9	D9	9	0,499
P10	10	D10	10	0,617
P12	12	D12	12	0,888
P13	13	D13	13	1,040
P14	14	D14	14	1,210
P16	16	D16	16	1,580
P18	18	D18	18	2,000
P19	19	D19	19	2,230
P20	20	D20	20	2,470
P22	22	D22	22	2,980
P25	25	D25	25	3,850
P28	28	D28	28	4,830
P32	32	D29	29	5,190
		D32	32	6,310
		D36	36	7,990
		D40	40	9,870
		D50	50	15,400

Tabel 3.4. Penyimpangan yang diijinkan untuk berat teoritis dari diameter tulangan nominal menurut PUBI 1982

Diameter Tulangan	Toleransi
Kurang dari 10 mm	<u>+</u> 7%
10 < d < 16 mm	<u>+</u> 6%
16 < d < 28 mm	<u>+</u> 5%
d > 28 mm	+ 4%

Variabel-variabel penyimpangan yang ada dipengaruhi oleh faktor-faktor antara lain :

a) Market (pasar)

Adanya perbedaan antara standar-standar yang diberikan oleh tiap-tiap

perusahaan (Allan ashworth). Di pasaran ada istilah tentang tulangan yaitu tulangan gemuk dan tulangan kurus, hal ini dilakukan agar konsumen ada berbagai alternatif pilihan. Untuk tulangan gemuk produsen menawarkan ukuran tulangan dan kekuatan tulangan sesuai dengan standarisasi menurut peraturan SII. Sedangkan untuk tulangan kurus produsen menawarkan tulangan dengan harga lebih terjangkau dengan ukuran tulangan dan kekuatan tulangan masih dalam toleransi berdasarkan SII.

b) Men (manusia)

Ini barangkali merupakan faktor yang paling penting dalam pencapaian kualitas dengan menempatkan seseorang sesuai dengan keahliannya untuk pekerjaan yang ada (Allan Asworth). Dalam hal ini pada pekerjaan penulangan meliputi pekerjaan pemotongan tulangan, pembengkokan tulangan, dan pemasangan tulangan jika tenaga kerjanya tidak sesuai dengan bidangnya maka hasilnya tidak sesuai dengan direncanakan (adanya penyimpangan).

c) Money (uang)

Kualitas berarti uang, jika jumlah uang yang ada tidak cukup memenuhi anggaran maka kualitas yang diinginkan akan sulit dicapai. (Allan Asworth). Adanya penyimpangan pada diameter tulangan dan panjang tulangan realisasi di lapangan disebabkan adanya pihak yang menginginkan keuntungan lebih besar. Penyimpangan pada diameter tulangan karena pihak produsen menginginkan keuntungan dengan selisih volume tulangan tiap batang tulangan.

d) Material (material)

Supaya proses produksi mencapai target yang telah ditetapkan bahan-bahan dan komponen-komponen harus tersedia dalam jumlah dan kualitas yang tepat, inilah fungsi perencanaan. Dari sini jelas terlihat manfaat standarisasi dan penyederhanaan dalam pembangunan, walaupun diterima atau tidaknya suatu bahan secara umum masih ditentukan oleh jenis produk. Produksi amat ditentukan oleh spesifikasi (ukuran, toleransi, dan kualitas), penentuan jenis bahan yang dibutuhkan, penyediannya dan prosedur memperolehnya (RA Burgess dan G White).

e) Methods (metode)

Seluruh metode dipakai dalam konstruksi ditentukan dalam rancangan produk. Sedankan penjelasan tentang pelaksanaan metode itu, urutan pelaksanaannya dan pemilihan proses-proses yang digunakan untuk suatu operasi yang khusus, pemilihan instalasi dan pola pergerakan dari bahanbahan dan buruh adalah tugas manajemen produksi. Pengawasan dilaksanakan dengan menentukan metode tertentu dan mengevaluasinya untuk menentukan efisiensinya. (RA Burgess dan G White).

f) Machines (mesin)

Mesin atau peralatan yang tepat untuk pekerjaan yang sedang dilaksanakan harus dipilih dengan cermat dan harus dipelihara dengan pantas agar dapat bekerja dengan efisien. (Allan Asworth). Lebih kecilnya diameter yang ada jika dibandingkan dengan yang ditawarkan produsen bisa juga disebabkan

semakin ausnya alat cetakan tulangan pada pabrik.

3.3 Perhitungan Volume dan Berat Tulangan

3.3.1 Tulangan Polos

Luas tampang tulangan dapat dihitung dengan rumus :

 $A = 0.25.\pi.D^2$

 $A_{\rm r} = 0.25.\pi.D_{\rm r}^2$

 $A_p = 0.25.\pi.D_p^2$ (3.3.1.a)

Keterangan:

A = Luas tampang tulangan (mm²)

 A_r = Luas tampang rencana tulangan (mm²)

 A_p = Luas tampang pelaksanaan tulangan (mm²)

D = Diameter tulangan (mm)

 D_r = Diameter rencana tulangan (mm)

 D_p = Diameter pelaksanaan tulangan (mm)

Jika luasan tulangan telah didapat pada persamaan (3.3.1.a) maka berat tulangan dapat dihitung dengan rumus:

Berat = $Volume \times Bi$

B = n x (1 x A) x Bj (3.3.1.b)

Keterangan:

B = Berat tulangan (kg)

n = Jumlah tulangan

1 = Panjang tulangan

A = Luas tulangan (cm²)

Bj = Berat jenis tulangan (besi). (kg/cm³)

3.3.2 Tulangan Deform (ulir).

Diambil beberapa sample tulangan deform untuk kemudian diukur panjangnya dan ditimbang, kemudian hasilnya dimasukkan ke dalam rumus

$$L1/L2 = W1/2$$

$$W2 = (W1 \times L2) L1 \dots (3.3.2.a)$$

Keterangan:

L1 = panjang tulangan sample yang diteliti (m)

L2 = panjang 1 meter tulangan

W1 = berat tulangan sample yang diteliti (kg)

W2 = berat nominal tulangan persatuan panjang pada sample tulangan (kg/m)

Adapun rumus untuk menghitung diameter tulangan deform adalah

D tulangan deform =
$$\sqrt{\frac{1000 x \beta}{7.85 x \pi / 4}} = 12.74 \sqrt{Bmm}$$
 (3.3.2.b)

B = berat persatuan panjang baja (kg/m)

Setelah berat nominal tulangan di lapangan diketahui maka berat tulangan di lapangan dapat diketahui dengan rumus :

$$Bp = W2 x (lp/100)$$

$$Br = Wo x (lr/100)$$

$$BA = Mr - Mp \qquad (3.3.2.c)$$

Keterangan:

Bp = berat tulangan pelaksanaan (kg)

Br = berat tulangan rencana (kg)

BA = selisih berat tulangan rencana dengan pelaksanaan (kg)

W2= berat nominal tulangan persatuan panjang pada sample tulangan (kg/m)

Wo= berat nominal tulangan persatuan panjang berdasarkan tabel 3.c (kg/m)

Ip = panjang tulangan pelaksanaan (cm)

Ir = panjang tulangan rencana (cm)

3.4 Biaya Dan Persentase Toleransi Penyimpangannya

Setelah hitungan pada persamaan (3.3.1.b) dan persamaan (3.3..2.c) didapat maka keuntungan/kerugian secara finansial dapat dihitung dengan rumus :

$$F = B$$
. Harga satuan tulangan (3.4.a)

Keterangan:

B = berat tulangan (kg)

F = Keuntungan / kerugian secara finansial pada proyek

Sedangkan untuk persentase toleransi pekerjaan tulangan dapat kita hitung dengan rumus.

$$L(\%) = \frac{\sum \Delta L}{\sum Lr}$$
 (3.4.b)

$$D(\%) = \frac{\Delta D}{Dr}$$
 (3.4.c)

$$B(\%) = \frac{\Delta B}{Br}$$
 (3.4.d)

Keterangan:

L (%) = Persentase penyimpangan panjang tulangan (%)

 $\sum \Delta L$ = Selisih panjang tulangan rencana dengan panjang tulangan di lapangan

 $= \sum Lr - \sum Lp (cm)$

 $\sum Lr$ = Jumlah panjang tulangan rencana (cm)

 \sum Lp = Jumlah panjang tulangan pelaksanaan di lapangan (cm)

D (%) = Persentase penyimpangan diameter tulangan (%)

 ΔD = Selisih diameter tulangan rencana dengan diameter tulangan di lapangan (cm)

Dr = Diameter tulangan rencana (cm)

B% = Persentase penyimpangan berat tulangan (%)

 ΔB = Selisih berat tulangan rencana dengan berat tulangan sebenarnya (yang ada di lapangan). (kg)

Br = Berat tulangan rencana (dari pabrik). (kg)

BAB IV

METODOLOGI PENELITIAN

Metode penelitian merupakan suatu tata cara pelaksanaan penelitian dalam rangka pencarian data-data yang diperlukan. Dalam pelaksanaan penelitian ini metode yang dipakai adalah sebagai berikut :

4.1. Subjek Penelitian

Subjek penelitian dari penelitian ini adalah pekerjaan penulangan pada proyek konstruksi bangunan gedung yang sedang berlangsung.

4.2. Obyek Penelitian

Objek penelitian dari penelitian ini adalah pada pekerjaan penulangan kolom, balok, dan pelat lantai dalam satu lantai.

4.3. Pengumpulan Data

1. Data gambar

Data gambar yang diperlukan pada penelitian antara lain:

- a) RAB
- b) Gambar rencana pekerjaan penulangan

2. Observasi di lapangan

Pelaksanaan penelitian ini adalah dengan cara pengukuran langsung di lapangan, adapun data-data yang diukur nantinya adalah :

- a) Diameter tulangan
- b) Panjang tulangan
- c) Berat sample pada tulangan deform

3. Wawancara

Untuk menambah segala sesuatu yang dianggap kurang pada penelitian kami ini maka kami melakukan wawancara dan meminta bimbingan pada pelaksana di lapangan yang memiliki pengalaman pada pekerjaan beton bertulang.

4.4. Alat dan Bahan yang digunakan

Alat-alat dan bahan yang digunakan dalam penelitian ini adalah :

a) Tulangan

Tulangan yang diteliti adalah tulangan yang terpasang pada balok, pelat lantai, dan kolom.

b) Meteran

Meteran ini berfungsi untuk pengukuran panjang tulangan

c) Caliper

Caliper ini berfungsi untuk pengukuran diameter tulangan

d) Timbangan

Timbangan digunakan untuk menimbang sampel tulangan deform.

4.5. Analisis Data

Data yang diperoleh dari penelitian tugas akhir ini analisis perhitungannya menggunakan bantuan program Microsoft Excel dengan cara mengolah data dalam bentuk tabel-tabel dan diagram.

BAB V

PENGUMPULAN DATA DAN PEMBAHASAN

5.1 Pelaksanaan Penelitian

Pelaksanaan penelitian adalah suatu proses kegiatan untuk memperoleh informasi. Langkah pertama dari penelitian ini adalah dengan melakukan penelitian secara langsung pada ke tiga proyek diantaranya proyek Pembangunan Gedung Kampus ABAYO, Pembangunan Gedung Kampus AKAKOM dan Pembangunan Gedung laboratorium Struktur UII. Penelitan dilakukan pada pekerjaan penulangan pelat lantai, dan penulangan kolom dengan mendata diameter tulangan, panjang tulangan, serta berat per satuan panjang (untuk tulangan deform) dalam satu lantai.

5.2 Tata Cara Pelaksanaan Penelitian

Tata cara pelaksanaan penelitian adalah suatu langkah atau metode untuk melakukan penelitian untuk mendapatkan data-data dan informasi yang berkaitan dengan penelitian yang akan dilaksanakan. Berikut ini adalah langkah-langkah penelitian yang akan kami lakukan pada kegiatan pekerjaan:

1. Pelat Lantai

Pelaksanaan pengukuran tulangan pada pembesian pelat lantai yaitu dengan melakukan pengukuran pada seluruh jenis tipe penulangan pelat pada satu lantai. Pada tiap jenis pelat yang typical diambil sampel 3 bagian saja dan nanti diambil rata-ratanya, untuk jenis tipe penulangan pelat yang hanya mempunyai jumlah satu-satu maka diukur seluruhnya. Sedangkan pada tiap sampel juga diukur tidak seluruhnya, missal di daerah Lx pada tulangan lapangan, tulangan tumpuan, atau tulangan bagi hanya diukur 3 batang tulangan saja, dan begitu juga pada derah Ly. Dan yang diukur adalah panjang dan diameternya.

2. Balok

Pelaksanaan pengukuran tulangan pada balok hamper sama dengan pelat, yaitu pada balok jenis typical makan akan diambil 3 sampel saja, untuk jenis yang hanya mempunyai jumlah satu-satu maka diukur seluruhnya. Tulangan pada tiap jenis balok diukur semuanya, kecuali untuk sengkang hanya diambil 3 batang saja.

3. Kolom

Pada Kolom Prinsip pengukurannya sama dengan balok. Pelaksanaan pengukuran tulangan pada kolom, yaitu pada Kolom jenis typical maka akan diambil 3 sampel saja, untuk jenis yang hanya mempunyai jumlah satu-satu maka diukur seluruhnya. Tulangan pada tiap jenis kolom diukur semuanya, kecuali untuk sengkang hanya diambil 3 batang saja.

5.3 Data Hasil Penelitian

Hasil penelitian ini ada dua macam yaitu data dari gambar rencana dan data lapangan.

5.3.1 Data Rencana Pekerjaan

a. Data diameter

Diameter yang digunakan dalam proyek ABAYO yaitu memakai tulangan

P 8 mm, P 10 mm, D 13 mm, D 16 mm, D 22 mm. Diameter yang digunakan dalam proyek AKAKOM adalah tulangan P8 mm, P 10 mm, P12 mm, D 19 mm, D25mm. Sedangkan untuk proyek Laboratorium Struktur UII memakai tulangan dengan diameter P8 mm, P10 mm, D19 mm, D22 mm, D25 mm.

- b. Data panjang tulangan dan berat tulangan
- 1. Proyek Akademi Bahasa Asing Yogyakarta (ABAYO)

Berdasarkan data Lampiran 1 pada Tabel Al-A4 maka data panjang tulangan dapat ditabekan sbb:

Tabel 5.1.a. Data Rencana Penulangan Balok Pada Proyek ABAYO

Jenis Pek	Panjang tul (cm) Rencana	Volume tul (cm ³) Rencana	Berat tu (kg) Rencana
Balok	L	V	В
Bt	9527,96	17830,29909	139,9424425
Blm	84894,00	160734,87300	1185,7556631
Bl	334188,00	622468,32480	4882,3066522
Bla	83664,00	156061,61100	1224,0632631
Blh	85599,00	163413,45000	1281,7262631
B2a	6326,49	9008,48071	70,7038587
B2b	6038,99	9148,82721	63,9563587
B2c	6139,00	10413,46460	87,2030612
B2g	12039,00	21151,95060	166,0198315
B2h	9816,60	22273,42044	140,2066156
B2i	4866,30	10977,13542	86,0997078
B2	25073,01	95835,60507	752,1388715
В3	24539,81	93815,59073	736,2952049
B3b	13020,60	24788,56044	159,9366313
ВЗс	6038,99	9255,48881	72,6375657
B3d	12278,00	23040,25240	148,6877273
B3g	16081,00	25012,20380	196,3053831
B4	16936,00	22474,36160	176,5676828
B5	57333,28	96121,14243	754,3957376
B6	31302,04	56422,37238	442,5588803
B6b	47186,67	94395,51733	740,4020459
Jumlah	892888,74	1746342,93185	13502,3850434

Diameter tulangan yang digunakan pada perencanaan balok ini adalah yaitu P10 mm, D13 mm, D16 mm, D22 mm.

Tabel 5.1.b. Data Rencana Penulangan Pelat Lantai Pada Proyek ABAYO

Jenis Pek	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
Pelat	Rencana	Rencana	Rencana
1 Clat	${f L}$	V	В
A1	61469,04	68360,3905	335,273561
A2	128030,08	89398,5632	701,2870290
B1	100344,79	70943,7706	556,5184081
B2	53385,40	37936,4438	297,5924334
В3	580047,36	407968,8960	3200,3120047
C1	44234,26	28401,0017	222,7916578
C2	227547,44	144193,8868	1131,1289450
D	44807,86	27379,4319	214,7779536
Е	44712,06	30337,7223	237,9842626
F	12801,02	8258,2471	64,7818194
G	96552,00	48507,7248	380,5188472
Н	79944,00	40163,8656	315,0654437
I	85779,52	43095,6308	338,0636762
J	43928,00	220869,4272	173,1236217
K	56751,00	28511,7024	223,6600495
Jumlah	1660360,83	1069906,2672	8392,8797131

Diameter tulangan yang digunakan dalam perencanaan pelat lantai ini yaitu P8 mm, P10 mm.

Tabel 5.1.c. Data Rencana Penulangan Kolom Pada Proyek ABAYO

Jenis Pek	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
Kolom	Rencana	Rencana	Rencana
Kololli	L	V	В
K1	224928	442072,3104	3468,188641
K1A	168696	334554,2328	2601,141481
K2	63420	85016,4420	667,938361
K4	12336	17736,7296	139,370491
K5	43296	109588,5120	859,556898

Jenis Pek Kolom	Panjang tul (cm) Rencana L	Volume tul (cm³) Rencana V	Berat tu (kg) Rencana B
Jumlah	512676	985968,2268	7736,195873

Diameter tulangan yang digunakan dalam perencanaan kolom ini yaitu P10 mm, D13 mm, D16 mm, D22 mm.

II. Proyek Akademi Komputer dan Komunikasi (AKAKOM)

Berdasarkan data dalam Lampiran 2 pada Tabel B1-B4 maka dapat ditabelkan sbb:

Tabel 5.1.d. Data Rencana Penulangan Balok Pada Proyek AKAKOM

Jenis Pek	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
Balok	Rencana	Rencana	Rencana
Dulok	${f L}$	V	В
B1	1028826,5	2736262,058	21475,23291
B2	78604,0	213294,517	1673,99353
В3	179520,0	371366,544	2920,09297
B3-sudut 1	30630,0	63906,458	502,51516
B3-sudut 2	6671,5	13182,438	103,64099
B4-1	6655,0	12835,653	100,94882
B4-2	2940,0	9921,038	78,01327
B4-3	6455,0	12268,883	96,48882
B5	62720,0	115781,848	910,51988
B5-ujung	10870,0	20477,746	161,04498
B6	53016,7	109366,723	860,23742
B6-ujung	11060,0	23167,470	182,23115
B7	19744,0	12728,430	99,84817
Jumlah	1497712,7	3714559,804	29164,80807

Diameter tulangan yang digunakan dalam perencanaan balok ini yaitu P8 mm, P10 mm, P12 mm, D19 mm, D25 mm.

Tabel 5.1.e. Data Rencana Penulangan Pelat Lantai Pada Proyek AKAKOM

Jenis Pek	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
Pelat	Rencana	Rencana	Rencana
1 Clat	${f L}$	V	В
A	782213,33	534457,3067	4192,55034
A sudut	233378,40	159147,5842	1248,43322
A tangga	68534,80	45932,2340	360,31541
A Lift	68874,00	45988,2516	360,75484
С	465645,00	310136,0730	2432,86242
C sudut	54650,00	36372,1900	285,32164
F	173634,00	117165,0180	919,10098
F sudut	18096,30	11980,9683	93,98471
F Lift	17123,40	11335,9338	88,92473
D	53800,00	27029,1200	212,02993
K	14057,20	9208,7408	72,23797
Е	54830,00	27546,5920	216,08924
J	17905,00	12081,4640	94,77304
H Lift	39690,00	31156,6500	244,40834
H Tangga	30770,00	19644,1540	154,09857
H wc	30530,00	19489,6660	152,88668
Jumlah	2123731,43	1418671,9463	11128,77208

Diameter tulangan yang digunakan dalam perencanaan pelat lantai mi yaitu P8 mm, P10 mm.

Tabel 5.1.f. Data Rencana Penulangan Kolom Pada Proyek AKAKOM

Jenis Pek	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
Kolom	Rencana	Rencana	Rencana
Kololli	L	V	В
K1	39420	86208,543	676,69360
K2	676260	1512509,583	11873,70894
K3	15630	42883,844	281,81453
K5	20880	51368,202	403,24498
K7	15075	39475,688	309,75425

Jenis Pek Kolom	Panjang tul (cm) Rencana	Volume tul (cm ³) Rencana	Berat tu (kg) Rencana	
Kololli	L	V	В	
K8	12600	28125,765	220,77612	
Jumlah	779865	1760571,624	13765,99244	

Diameter tulangan yang digunakan dalam perencanaan kolom ini yaitu P12 mm, D19 mm, D25 mm.

III. Proyek Laboratorium Struktur Universitas Islam Indonesia

Berdasarkan data dalam Lampiran 3 pada Tabel C1-C4 maka dapat ditabelkan sbb:

Tabel 5.1.g. Data Rencana Penulangan Balok Pada Proyek Lab Struktur UII

Jenis Pek Balok	Panjang tul (cm) Rencana	Volume tul (cm ³) Rencana	Berat tu (kg) Rencana
Dalok	L	V	В
B1	121773,6	238298,795	1869,126912
B2	40489,2	85637,033	671,701217
В3	308080,0	607188,080	4762,554426
B4	126347,3	272990,748	2141,222612
B5	24486,0	49021,868	384,508615
B6	24998,9	50705,389	397,713129
B7	8709,3	14448,989	113,333999
B8	133839,4	266947,610	2093,834591
В9	24688,0	49467,811	388,006394
B10	10923,9	21488,726	168,549488
Jumlah	824335,7	1656195,050	12990,551380

Diameter tulangan yang digunakan dalam perencanaan Balok ini yaitu P10 mm, D19 mm, D22 mm.

Tabel 5.1.h. Data Rencana Penulangan Pelat Lantai Pada Proyek Lab Struktur UII

Jenis Pek Pelat	Panjang tul (cm) Rencana	Volume tul (cm³) Rencana	Berat tu (kg) Rencana
1 Clat	L	V	В
A1	51831,12	31138,02478	244,2622354
A2	353175,48	209906,32723	1646,6101840
A3	90137,04	62131,60202	487,3913520
B1	169584,00	85199,00160	668,3435681
B2	7896,00	9137,14880	71,6763638
В3	33240,00	21526,58400	168,8652882
B4	9088,00	5958,46400	46,7411708
Jumlah	714951,64	424997,15242	3333,8901622

Diameter tulangan yang digunakan dalam perencanaan pelat lantai ini yaitu P8 mm, P10 mm.

Tabel 5.1.i. Data Rencana Penulangan Kolom Pada Proyek Lab Struktur UII

Jenis Pek Kolom	Panjang tul (cm) Rencana L	Volume tul (cm³) Rencana V	Berat tu (kg) Rencana B
K1	41632	85357,76	670,1601258
K2	32672	64231,84	503,8104346
K3	203648	476074,24	3737,1798858
K4	130224	299819,76	2353,7736899
Jumlah	408176	925483,6	7264,9241361

Diameter tulangan yang digunakan dalam perencanaan kolom ini yaitu P10 mm, D19 mm, D22 mm, D25 mm.

5.3.2. Data Hasil Penelitian Di Lapangan

a. Data diameter

Diameter tulangan yang digunakan pada proyek ABAYO, proyek AKAKOM, dan Proyek Laboratorium struktur UII berdasarkan data dalam

Lampiran 1 pada Tabel A1, A5-A7, Lampiran 2 pada Tabel B1, B5-B7, dan Lampiran 3 pada Tabel C1, C5-C7, maka data diameter tulangan hasil penelitian penulangan balok, pelat lantai, dan kolom di lapangan dapat ditabelkan sebagai berikut:

Tabel 5.2.a. Data Hasil Penelitian Diameter Tulangan yang Digunakan Pada Proyek ABAYO

Diameter Rencana (mm)	Penjumlahan Diameter (mm)	Jml Diameter Total (mm)	Jumlah Sampel (buah)	Jumlah Sampel Total (buah)	Keterangan (asal sampel)	Rata-rata Diameter (mm) Pelaksanaan
P 8	4132,53100	4132,531	537	537	Pelat	7,70
	1744,36000		183		Balok,	
P 10	4591,22000	6923,590	477	720	Pelat,	6,62
	588,01000		60		Kolom	
	11,40084		1		Balok,	
D 13	11,42834	34,382	1	3	Kolom	11,46
	11,55283		1			
	15,78918		1		Balok,	
D 16	15,76075	46,924	1	3	Kolom	15,64
	15,37428		1			
	20,83696		1		Balok,	
D 22	21,61478	64,038	1	3	Kolom	21,35
	21,58626		1			

Tabel 5.2.b. Data Hasil Penelitian Diameter Tulangan yang Digunakan Pada Proyek AKAKOM

Diameter Rencana (mm)	Penjumlahan Diameter (mm)	Jml Diameter Total (mm)	Jumlah Sampel (buah)	Jumlah Sampel Total (buah)	Keterangan (asal sampel)	Rata-rata Diameter (mm) Pelaksanaan
P 8	115,3200		15		Pelat	
	3818,3000	3933,62	501	516	Balok,	7,62
P 10	324,2500		53		Pelat,	
	3884,7500	4209,00	402	435	Kolom	9,68
P 12	533,8200		45		Balok,	
	500,9700	1034,79	42	87	Kolom	11,89
	18,7074		1		Balok,	
D 19	18,6026		1		Kolom	
	18,2507	55,56	1	3		18,52
	24,5588		1			
D 25	24,5522		1		Kolom	
	24,5654	73,68	1	3		24,56

Tabel 5.2.c. Data Hasil Penelitian Diameter Tulangan yang Digunakan Pada Proyek Lab UII

Diameter Rencana (mm)	Penjumlahan Diameter (mm)	Jml Diameter Total (mm)	Jumlah Sampel (buah)	Jumlah Sampel Total (buah)	Keterangan (asal sampel)	Rata-rata Diameter (mm) Pelaksanaan
P 8	2550,6000		320		Pelat	7,97
	1423,7500		145		Balok,	
P 10	1279,6800	3058,0700	131	312	Pelat,	9,80
	354,6400		36		Kolom	
	18,4708		1		Balok,	
D 19	18,3474	55,4378	1	3	Kolom	18,48
	18,6196		1			
	21,6289		1		Balok,	
D 22	21,5227	64,4764	1	3	Kolom	21,49
	21,3257		1			
	24,5324		1			
D 25	24,4860	73,5309	1	3	Kolom	24,51
	24,5125		1			

b. Data Panjang Tulangan dan Berat Tulangan

1. Proyek Akademi Bahasa Asing Yogyakarta (ABAYO)

Berdasarkan data dalam Lampiran 1 pada table A5-A7, maka data panjang dan berat tulangan di lapangan dapat ditabelkan sbb :

Tabel 5.3.a. Data Hasil Penelitian Penulangan Balok yang Digunakan Pada Proyek ABAYO

Jenis Pek	Panjang tul (cm) Lapangan	Volume tul (cm ³) Lapangan	Berat tu (kg) Lapangan
Balok	L	V	В
Bt	10148,26667	17293,565	135,71391
B1m	88172,40000	151938,886	1121,97934
B1	350640,09333	593063,422	4654,04123
B1a	87490,35667	148711,764	1167,01514
B1h	90161,98333	156040,049	1224,52760
B2a	6318,06667	8180,775	64,20059
B2b	6448,00000	7599,196	59,63537
B2c	5809,40000	10508,705	82,46746
B2g	16519,30000	23201,939	182,06942
B2h	12629,96667	22957,156	148,04298
B2i	5780,90000	10945,915	85,89956
B2	60607,18889	91508,609	718,09595
В3	61304,10000	90098,313	707,02517
B3b	12581,23333	23011,027	148,63961
ВЗс	6052,63333	7420,241	58,23154
B3d	11765,50000	21003,996	135,48121
B3g	16726,80000	24157,914	189,57227
B4	17916,48333	21660,163	169,97119
B5	59646,22222	81012,164	635,76838
В6	31596,13333	53546,457	419,99960
B6b	47682,94444	89271,538	700,56815
Jumlah	1005997,97222	1653131,792	12808,94567

Diameter tulangan yang digunakan dalam pembesian balok ini adalah

yaitu P10 mm, D13 mm, D16 mm, D22 mm.

Tabel 5.3.b. Data Hasil Penelitian Penulangan Pelat Lantai yang Digunakan Pada Proyek ABAYO

Jenis Pek	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
Balok	Lapangan	Lapangan	Lapangan
Daiok	L	V	В
A1	72609,83333	71437,44553	350,385030
A2	148626,13333	88016,47768	690,445259
B1	118129,32333	76075,21813	596,772049
B2	55848,40333	35546,64967	278,845693
В3	635484,29333	413161,51852	3241,045532
C1	169261,15000	31647,34847	248,257625
C2	239698,36000	152123,07034	1193,329425
D	51449,37667	31456,22135	246,758328
Е	45326,56667	29265,83433	229,575837
F	12545,67667	8153,86748	63,963013
G	94486,80000	45128,45086	354,010133
Н	81032,16667	38803,04558	304,390491
I	83622,20000	39698,67265	311,416238
J	44415,50333	21117,31324	165,654764
K	57261,01667	27227,60723	213,586965
Jumlah	1909796,80333	1082087,62610	8488,436383

 $\label{eq:discrete_problem} Diameter tulangan yang digunakan dalam pembesian pelat lantai ini yaitu $$P8$ mm, $P10$ mm.$

Tabel 5.3.c. Data Hasil Penelitian Penulangan Kolom yang Digunakan Pada Proyek ABAYO

Jenis Pek Kolom	Panjang tul (cm) Rencana	Volume tul (cm³) Rencana	Berat tu (kg) Rencana	
Kololli	L	V	В	
K1	276310,293	454838,058	3569,287868	
K1A	207859,660	341165,619	2677,257732	
K2	70454,448	86607,091	679,615833	

Jenis Pek Kolom	Panjang tul (cm) Rencana	Volume tul (cm³) Rencana	Berat tu (kg) Rencana	
IXOIOIII	L	V	В	
K4	13798,810	18121,253	142,204087	
K5	48766,307	107848,246	846,381840	
Jumlah	617189,518	1008580,267	7914,747359	

Diameter tulangan yang digunakan dalam pembesian kolom ini yaitu P10 mm, D13 mm, D16 mm, D22 mm.

II. Proyek Akademi Komputer dan Komunikasi (AKAKOM)

Berdasarkan data dalam Lampiran 2 pada Tabel B5-B7, maka data panjang dan berat tulangan di lapangan dapat ditabelkan sbb :

Tabel 5.3.d. Data Hasil Penelitian Penulangan Balok yang Digunakan Pada Proyek AKAKOM

Jenis Pek	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
Balok	Lapangan	Lapangan	Lapangan
Dalok	L	V	В
B1	1048888,389	2707099,503	21243,93987
B2	81141,267	208103,701	1633,09642
В3	158800,800	299270,044	2348,40967
B3-sudut 1	28392,933	52680,444	413,39117
B3-sudut 2	6020,900	10919,708	85,68685
B4-1	6048,367	10747,467	84,34097
B4-2	5811,967	9604,558	75,37017
B4-3	6307,100	11209,920	87,96986
B5	67832,800	114930,856	901,90418
B5-ujung	10903,600	19562,808	153,51935
В6	48916,222	89354,042	701,2127
B6-ujung	10635,800	1932,071	151,64663
B7	19288,500	11973,515	93,926623
Jumlah	1498988,644	3564780,635	27974,41407

Diameter tulangan yang digunakan dalam pembesian balok ini yaitu P8 mm, P10 mm, P12 mm, D 19 mm, D25 mm.

Tabel 5.3.e. Data Hasil Penelitian Penulangan Pelat Lantai yang Digunakan Pada Proyek AKAKOM

Jenis Pek Pelat Lantai	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
	Lapangan	Lapangan	Lapangan
	${f L}$	${f V}$	В
A	753640,000	469330,0879	3681,659874
A sudut	223984,300	139200,7020	1091,959907
A tangga	69195,100	42601,6621	334,188738
A Lift	61637,200	38486,0560	301,903866
С	418806,100	260074,5409	2040,154736
C sudut	52122,067	32034,4461	251,294213
F	205436,667	124024,7866	972,912438
F sudut	2048,700	12405,8112	97,317386
F Lift	1738,933	11789,7051	92,484342
D	33101,167	16624,0223	130,407143
K	13673,133	8292,4245	65,049924
Е	53838,433	24755,3526	194,193364
J	18175,833	11375,6134	89,235999
H Lift	37674,433	28028,5852	219,870237
H tangga	30042,733	18026,5048	141,408917
H wc	29876,433	17671,9022	138,627237
Jumlah	2041426,233	1254722,2028	9842,668320

Diameter tulangan yang digunakan dalam pembesian perencanaan pelat lantai ini yaitu P8 mm, P10 mm.

Tabel 5.3.f. Data Hasil Penelitian Penulangan Kolom yang Digunakan Pada Proyek AKAKOM

Jenis Pek Kolom	Panjang tul (cm) Rencana	Volume tul (cm ³) Rencana	Berat tu (kg) Rencana
	L	V	В
K1	38821,7000	82915,65582	650,642410
K2	657590,5556	1428660,10021	11210,925016
К3	14765,1333	39444,52848	258,557655
K5	20046,6000	47802,38318	375,124152
K7	14311,1000	39192,82310	307,567932
K8	12468,5000	27096,45581	212,627712
Jumlah	758003,5889	1665111,94660	13015,444877

Diameter tulangan yang digunakan dalam pembesian kolom ini yaitu P12 mm, D19 mm, D25 mm.

III. Proyek Laboratorium Struktur Universitas Islam Indonesia

Berdasarkan data dalam lampiran 3 pada tabel C5-C7, maka data panjang dan berat tulangan di lapangan dapat ditabelkan sbb :

Tabel 5.3.g. Data Hasil Penelitian Penulangan Balok yang Digunakan Pada Proyek Lab Struktur UII

Jenis Pek Balok	Panjang tul (cm) Lapangan	Volume tul (cm ³) Lapangan	Berat tu (kg) Lapangan
	L	V	В
B1	123279,7333	214218,7787	1681,116929
B2	1681,1169	81040,3530	636,003192
В3	309498,6667	533123,8682	4183,784715
B4	126272,1333	235066,0585	1844,777643
B5	25125,1111	47346,5217	371,565506
В6	25697,9556	49248,5737	386,493705
В7	8798,9333	13840,1699	108,609149
B8	131415,3556	256024,5040	2009,244304
B9	25211,9556	47514,2971	372,882386
B10	10905,2000	20488,8234	160,792355
Jumlah	819073,9778	1497911,9482	11755,269885

Diameter tulangan yang digunakan dalam pembesian balok ini yaitu P10 mm, D19 mm, D22 mm.

Tabel 5.3.h. Data Hasil Penelitian Penulangan Pelat Lantai yang Digunakan Pada Proyek Lab Struktur UII

Jenis Pek	Panjang tul (cm)	Volume tul (cm ³)	Berat tu (kg)
Pelat Lantai	Lapangan	Lapangan	Lapangan
Pelat Lantai	L	V	В
A1	51254,3733	28155,47214	220,8656012
A2	348905,9000	191713,07836	1503,8932432
A3	96300,3111	60030,00932	470,9054081
B1	173838,1667	81362,13606	638,2452764
B2	9049,8000	9145,69663	71,7434172
В3	37303,8333	24313,02159	190,7235261
B4	9542,6000	6111,50521	47,94117027
Jumlah	726194,9844	400830,92292	3144,3181749

Diameter tulangan yang digunakan dalam pembesian pelat lantai ini yaitu P8 mm, P10 mm.

Tabel 5.3.i. Data Hasil Penelitian Penulangan Kolom yang Digunakan Pada Proyek Lab Struktur UII

Jenis Pek Kolom	Panjang tul (cm) Volume tul (cm³) Rencana Rencana		Berat tu (kg) Rencana	
	L	V	Б	
	440000000	0.1.500.500.5		
K1	41828,26667	81782,72925	641,8039388	
K2	32893,86667	75798,09525	594,8455171	
K3	204566,40000	457970,39877	3594,0851464	
K4	131512,93333	288970,83741	2267,7946104	
Jumlah	410801,46667	904522,06069	7098,529213	

Diameter tulangan yang digunakan dalam pembesian kolom ini yaitu P10 mm, D19 mm. D22 mm, D25 mm.

5.4. Analisis Penelitian

Dalam analisis penelitian ini, sesuai dengan tujuan penelitian kami maka peneliti mencoba untuk mengetahui penyimpangan yang terjadi pada pekerjaan pembesian pelat,kolom, dan balok antara volume tulangan yang dibutuhkan dalam gambar rencana dengan volume tulangan yang terpasang di lapangan. Persentase penyimpangan tersebut dicari dalam bentuk berat tulangan.

5.4.1. Analisis Tulangan

5.4.1.1. Diameter Tulangan

Berdasarkan hasil penelitian diameter di lapangan pada Tabel 5.2.a-5.2.c maka dapat diketahui besarnya penyimpangan yang terjadi pada diameter tulangan, dan dapat ditabelkan seperti berikut :

Tabel 5.4.a. Data Diameter Tulangan Pada Proyek ABAYO

Jenis	ABAYO					
Pekerjaan	D rencana	D lapangan	Penyimpanan			
	(mm)	(mm)	(%)			
Dalat	8	7,70	3,75			
Pelat, Balok Dan	10	9,62	3,80			
Kolom	13	11,46	11,85			
Kololli	16	15,64	2,25			
	22	21,35	2,96			

Tabel 5.4.b. Data Diameter Tulangan Pada Proyek ABAYO

Jenis	AKAKOM			
Pekerjaan	D rencana	D lapangan	Penyimpanan	
	(mm)	(mm)	(%)	
Dolot	8	7,62	4,75	
Pelat, Balok Dan	10	9,68	3,20	
Kolom	12	11,89	0,92	
KOIOIII	13	18,52	2,53	
	25	24,56	1,76	

Tabel 5.4.c. Data Diameter Tulangan Pada Proyek Proyek Lab. Struktur UII

Jenis	Proyek Lab. Struktur UII					
Pekerjaan	D rencana	D lapangan	Penyimpanan			
	(mm)	(mm)	(%)			
Dalas	8	7,97	0,38			
Pelat, Balok Dan	10	9,80	2,00			
	19	18,48	2,74			
Kolom	22	21,49	2,32			
	25	24,51	1,96			

Dari data penyimpangan diameter tulangan pada Tabel 5.4.a – 5.4.c, yaitu dari data masing-masing proyek, dan bila penyimpangan diameter tulangan dari ketiga proyek tersebut digabungkan akan terlihat pada tabel berikut ini :

Tabel 5.4.d. Penyimpangan Diameter Tulangan Pada Ketiga Proyek

Ionia		Proyek Lal	b. Struktur UI	Ţ.	Penyimpangan
Jenis Pokorioon	Donoono		Pelaksanaan		
Pekerjaan	Rencana	ABAYO	AKAKOM	Lab. UII	(%)
	P8	7,70	7,62	7,97	0,38 - 4,75
	P10	9,62	9,68	9,80	2,00-3,80
Pelat,	P12	-	11,89	-	0,920
Balok Dan	D13	11,46	-	-	11,85
Kolom	D16	15,64	-	-	2,25
	D19	-	18,52	18,48	2,53 - 2,74
	D22	21,35	-	21,49	2,32 - 2,96
	D25	-	24,56	24,51	1,76 - 1,96

5.4.1.2.Panjang dan Berat Tulangan

Berdasarkan hasil penelitian yang terdapat pada Tabel 5.1.a – 5.1.c Tabel 5.3.a - 5.3.c, Tabel 5.1.d – 5.1.f, Tabel 5.3.d – 5.3.f, Tabel 5.1.g-5.1.i, Tabel 5.3.g – 5.3.i. Maka analisis penyimpangan panjang dan berat tulangan dari tiap proyek yang terjadi terdapat dalam tabel seperti berikut ini :

Tabel 5.5.a. Analisis Panjang dan Berat Tulangan Balok Pada Proyek ABAYO

Ionia Dale Dalak	Panj	ang Tulangar	n (cm)	Berat Tulangan (Kg)*		
Jenis Pek Balok	R	P	ΔL	R	P	ΔΒ
Bt	9527,96	10148,27	-620,31	139,942	135,714	4,229
B1m	84894,00	88172,40	-3278,40	1185,756	1121,979	63,776
B1	334188,00	350640,09	-16452,09	4882,307	4654,041	228,265
B1a	83664,00	87490,36	-3826,36	1224,063	1167,015	57,048
B1h	85599,00	90161,98	-4562,98	1281,726	1224,528	57,199
B2a	6362,49	6318,07	8,42	70,704	64,201	6,503
B2b	6038,99	6448,00	-409,01	63,956	59,635	4,321
B2c	6139,00	5809,40	329,60	87,203	82,467	4,736
B2g	12039,00	16519,30	-4480,30	166,020	182,069	-16,050
B2h	9816,60	12629,97	-2813,37	140,207	148,043	-7,836
B2i	4866,30	5780,90	-914,60	86,100	85,900	0,200
B2	25073,01	60607,19	-35534,18	752,139	718,096	34,043
В3	24539,81	61304,10	-36764,29	736,295	707,025	29,270
B3b	13020,60	12581,23	439,37	159,937	148,640	11,297
ВЗс	6038,99	6052,63	-13,64	72,638	58,232	14,406
B3d	12278,00	11765,50	512,50	148,688	135,481	13,207
B3g	16081,00	16726,80	-645,80	196,305	189,572	6,733
B4	16936,00	17916,48	-980,48	176,568	160,971	6,596
B5	57333,29	59646,22	-2312,94	754,396	635,768	118,627
В6	31302,04	31596,13	-294,09	442,559	420,000	22,559
B6b	47186,67	47682,94	-469,28	740,402	700,568	39,834
Jumlah Total	892888,74	1005997,97	-113109,23	13502,385	12000,940	693,439
Penyimpangan (%)		-12,668			5,13	57

Keterangan:

R = Rencana

P = Pelaksanaan

 $\Delta\beta$ = Selisih Berat

 $\Delta L = Selisih Panjang$

* Ada Perbedaan Diameter Tulangan

Dari Tabel 5.5.a dapat diketahui persentase penyimpangan panjang tulangan pada balok sebesar -12,668%, hasilnya negatif berarti panjang tulangan

di lapangan lebih besar dari perencanaan dan persentase penyimpangan berat tulangan pada balok sebesar 5,1357%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

Tabel 5.5.b. Analisis Panjang dan Berat Tulangan Pelat Lantai Pada Proyek ABAYO

Jenis Pek Pelat	Panja	ng Tulangan	(cm)	Berat	t Tulangan (I	Kg)*
Lantai	R	P	ΔL	R	P	ΔB
A1	61496,04	72609,83	-11113,79	335,274	350,385	-15,111
A2	128030,08	148626,13	-20596,05	701,287	690,445	10,842
B1	100344,79	118129,32	-17784,53	556,518	596,772	-40,254
B2	53385,40	55848,40	-2463,00	297,592	278,846	18,747
В3	580047,36	635484,29	-55436,93	3200,312	3241,046	-40,734
C1	44234,26	169261,15	-125026,89	222,792	248,258	-25,466
C2	227547,44	239698,36	-12150,92	1131,129	1193,329	-62,200
D	44807,86	51449,38	-6641,52	214,778	246,758	-31,980
Е	44712,06	45326,57	-614,51	237,984	229,576	8,408
F	12801,00	12545,68	255,34	64,782	63,963	0,819
G	96552,00	94486,80	2065,20	380,519	354,010	26,509
Н	79944,00	81032,17	-1088,17	315,065	304,390	10,675
I	85779,52	83622,20	2157,32	338,064	311,416	26,647
J	43928,00	44415,50	-487,50	173,124	165,655	7,469
K	56751,00	57261,02	-510,02	223,660	213,587	10,073
Jumlah Total	16640360,83	1909796,80	-249435,97	8392,880	8488,436	-95,557
Penyimpangan (%)		-15,	,023		-1,13	854

Dari Tabel 5.5.b dapat diketahui persentase penyimpangan panjang tulangan pada pelat lantai sebesar -15,023%, hasilnya negatif berarti panjang tulangan di lapangan lebih besar dari perencanaan dan persentase penyimpangan berat tulangan pada pelat lantai sebesar -1,13854%, hasilnya negatif berarti berat tulangan di lapangan lebih besar dari perencanaan

Tabel 5.5.c. Analisis Panjang dan Berat Tulangan Kolom Pada Proyek ABAYO

Jenis Pek Kolom	Panjang Tulangan (cm)			Berat Tulangan (Kg)*		
	R	P	ΔL	R	P	ΔB
K1	224928,00	276310,29	-51382,29	3468,189	3569,288	-101,099
K1A	168696,00	207859,66	-39163,66	2601,141	2677,258	-76,116
K2	63420,00	70454,45	-7034,45	667,938	679,616	-11,677
K4	12336,00	13798,81	-1462,81	139,370	142,204	-2,834
K5	43296,00	48766,31	-5470,31	859,557	846,382	13,175
Jumlah Total	512676,00	617189,52	-104513,52	7736,196	7914,747	-178,551
Penyimpangan (%)		-20,386			-2,308	

Dari Tabel 5.5.c dapat diketahui persentase penyimpangan panjang tulangan pada kolom sebesar -20,386%, hasilnya negatif berarti panjang tulangan di lapangan lebih besar dari perencanaan dan persentase penyimpangan berat tulangan pada kolom sebesar -2,308%, hasilnya negatif berarti berat tulangan di lapangan lebih besar dari perencanaan.

Tabel 5.5.d. Analisis Panjang dan Berat Tulangan Balok Pada Proyek AKAKOM

Jonia Daly Dalak	Panjang Tulangan (cm)			Berat Tulangan (Kg)*		
Jenis Pek Balok	R	P	ΔL	R	P	ΔB
B1	1028826,50	1048888,39	-20061,89	21475,233	21243,940	231,293
B2	78604,00	81141,27	-2537,27	1673,994	1633,096	40,897
В3	179520,00	158800,80	20719,20	2920,093	2348,410	571,683
B3-sudut 1	30630,00	28392,93	2237,07	502,515	413,391	89,124
B3-sudut 2	6671,50	6020,90	650,60	103,641	85,687	17,954
B4-1	6655,00	6048,37	606,63	100,949	84,341	16,608
B4-2	2940,00	5811,97	-2871,97	78,013	75,370	2,643
B4-3	6455,00	6307,10	147,90	96,489	87,970	8,519
B5	6272,00	67832,80	-5112,80	910,520	901,904	8,616
B5-ujung	10870,00	10903,60	-33,60	161,045	153,519	7,526
В6	53016,67	48916,22	4100,44	860,237	701,213	159,025
B6-ujung	11060,00	10635,,80	424,20	182,231	151,647	30,585
В7	19744,00	19288,50	455,50	99,848	93,926	5,922
Jumlah Total	1497712,67	1498988,64	-1275,98	29164,808	27974,414	1190,394
Penyimpangan (%)		-0,085			4,0816	

Dari Tabel 5.5.d dapat diketahui persentase penyimpangan panjang tulangan pada balok sebesar -0,085%, hasilnya negatif berarti panjang tulangan di lapangan lebih besar dari perencanaan dan persentase penyimpangan berat tulangan pada balok sebesar -4,0816%, hasilnya positif berarti berat tulangan di lapangan lebih besar dari perencanaan.

Tabel 5.5.e. Analisis Panjang dan Berat Tulangan Pelat Lantai Pada Proyek AKAKOM

Jenis Pek Pelat	Panja	ng Tulangan	(cm)	Bera	t Tulangan (l	Kg)*
Lantai	R	P	ΔL	R	P	ΔB
A	782213,33	753640,00	28573,33	4192,5503	3681,6599	510,89
A sudut	233378,40	223984,30	9394,10	1248,4332	1091,9599	156,473
A tangga	68534,80	69195,10	-660,30	360,31541	334,18874	26,1267
A Lift	68874,00	61637,20	7236,80	360,75484	301,90387	58,851
С	465645,00	418806,10	46838,90	2432,8624	2040,1547	392,708
C sudut	54650,00	52122,07	2527,93	285,32164	251,29421	34,0274
F	173634,00	205436,67	-31802,67	919,10098	972,91244	-53,8115
F sudut	18096,30	20483,70	-2387,40	93,984706	97,317386	-3,33268
F Lift	17123,40	19738,93	-2615,53	88,924733	92,484342	-3,55691
D	53800,00	33101,17	20698,83	212,02993	130,40714	81,6228
K	14057,20	13673,13	384,07	72,237967	65,049924	7,18804
Е	54830,00	53838,43	991,57	216,08924	194,19336	21,8959
J	17905,00	18175,83	-270,83	94,773044	89,235999	5,53704
H Lift	39690,00	37674,43	2015,57	244,40834	219,87024	24,5381
H Tangga	30770,00	30042,73	727,27	154,09857	141,40892	12,6896
H wc	30530,00	29876,43	653,57	152,88668	138,62724	14,2594
Jumlah Total	2123731,43	2041426,23	82305,20	11128,772	9842,6683	1286,1
Penyimpangan (%)		3,875			11,5566	

Dari Tabel 5.5.e dapat diketahui persentase penyimpangan panjang tulangan pada pelat lantai sebesar 3,875%, hasilnya positif berarti panjang tulangan di lapangan lebih kecil dari perencanaan dan persentase penyimpangan berat tulangan pada balok sebesar 11,5566%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

Tabel 5.5.f. Analisis Panjang dan Berat Tulangan Kolom Pada Proyek AKAKOM

Jenis Pek Kolom	Panjang Tulangan (cm)			Berat Tulangan (Kg)*		
	R	P	ΔL	R	P	ΔB
K1	39420,00	38821,70	598,30	676,694	650,642	26,051
K2	676260,00	657590,56	18669,44	11873,709	11210,925	662,784
K3	15630,00	14765,13	864,87	281,815	258,558	23,257
K5	20880,00	20046,60	833,40	403245	375,124	28,121
K7	15075,00	14311,10	763,90	309,754	307,568	2,186
K8	12600,00	12468,50	131,50	220,776	212,628	8,148
Jumlah Total	779865,00	758003,59	21861,41	13765,992	13015,445	750,548
Penyimpangan (%)		2,803			5,4522	

Dari Tabel 5.5.f dapat diketahui persentase penyimpangan panjang tulangan pada kolom sebesar 2,803%, hasilnya positif berarti panjang tulangan di lapangan lebih kecil dari perencanaan dan persentase penyimpangan berat tulangan pada balok sebesar 5,4522%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

Tabel 5.5.g. Analisis Panjang dan Berat Tulangan Balok Pada Proyek Lab UII

Jenis Pek Pelat	Panja	ng Tulangan	(cm)	Bera	t Tulangan (F	(g)*
Lantai	R	P	ΔL	R	P	ΔB
B1	121773,60	123279,73	-1506,13	1869,1269	1681,1169	188,0100
B2	40489,24	1681,12	38808,12	671,7012	636,0032	35,6980
В3	308080,00	309498,67	-1418,67	4762,5544	4183,7847	578,7697
B4	126347,28	126272,13	75,15	2141,2226	1844,7776	296,4450
B5	24486,00	25125,11	-639,11	384,5086	371,5655	12,9431
B6	24998,92	25697,96	-699,04	397,7131	386,4937	11,2194
B7	8709,28	8798,93	-89,65	113,3340	108,6091	4,7248
B8	133839,44	131415,36	2424,08	2093,8346	2009,2443	84,5903
В9	24688,00	25211,96	-523,96	388,0064	372,8824	15,1240
B10	10923,92	10905,20	18,72	168,5495	160,7924	7,7571
Jumlah Total	824335,68	819073,98	5261,70	12990,5514	11755,2699	1235,2815
Penyimpangan (%)		0,638	9,5091			

Dari Tabel 5.5.g dapat diketahui persentase penyimpangan panjang tulangan pada balok sebesar 0,638%, hasilnya positif berarti panjang tulangan di lapangan lebih kecil dari perencanaan dan persentase penyimpangan berat tulangan pada balok sebesar 9,5051%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

Tabel 5.5.h. Analisis Panjang dan Berat Tulangan Pelat Lantai Pada Proyek Lab UII

Jenis Pek Pelat	Panja	ng Tulangan	(cm)	Berat Tulangan (Kg)*			
Lantai	R	P	ΔL	R	P	ΔB	
A1	51831,12	51254,37	576,75	244,2622	220,8656	23,3966	
A2	353175,48	348905,90	4269,58	1646,6102	1503,8932	142,7169	
A3	90137,04	96300,31	-6163,27	487,3914	470,9054	16,4859	
B1	169584,00	173838,17	-4254,17	668,3436	638,2453	30,0983	
B2	7896,00	9049,80	-1153,80	71,6764	71,7434	-0,0671	
В3	33240,00	37303,80	-4063,83	168,8653	190,7235	-21,8582	
B4	9088,00	9542,60	-454,60	46,7412	47,9417	-1,2005	
Jumlah Total	714951,64	726194,98	-11243,34	3333,8902	3144,3128	189,5720	
Penyimpangan (%)	5,6862						

Dari Tabel 5.5.h dapat diketahui persentase penyimpangan panjang tulangan pada pelat lantai sebesar -1,573%, hasilnya positif berarti panjang tulangan di lapangan lebih besar dari perencanaan dan persentase penyimpangan berat tulangan pada pelat lantai sebesar 5,686%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

Tabel 5.5.i. Analisis Panjang dan Berat Tulangan Kolom Pada Proyek Lab UII

Jenis Pek Pelat	Panja	ng Tulangan	(cm)	Berat Tulangan (Kg)*			
Lantai	R	P	ΔL	R	P	ΔB	
K1	41632,00	41828,27	-196,27	670,1601	641,8039	28,3562	
K2	32762,00	32893,87	-221,87	503,8104	485,1348	18,6756	
K3	203648,00	204566,40	-918,40	3737,1799	3594,0851	143,0947	
K4	130224,00	131512,93	-1288,93	2353,7737	2267,7946	85,9791	
Jumlah Total	408176,00	410801,47	-2625,47	7264,9241	6988,8185	276,1056	
Penyimpangan (%)	2%) -0,643 3,8005			3,8005			

Dari Tabel 5.5.i dapat diketahui persentase penyimpangan panjang tulangan pada kolom sebesar -0,643%, hasilnya negatif berarti panjang tulangan di lapangan lebih besar dari perencanaan dan persentase penyimpangan berat tulangan pada kolom sebesar 3,8005%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

Berdasarkan hasil hitungan pada Tabel 5.5.a – Tabel 5.5.i, maka rekapitulasi penyimpangan panjang tulangan dan berat tulangan pada tiap proyek dapat ditabelkan seperti di bawah ini:

Tabel 5.5.j. Rekapitulasi Analisis Panjang dan Berat Pada Proyek ABAYO

Jenis Pekekerjaan	Panja	ang Tulangan	(cm)	Berat Tulangan (Kg)*			
Jeins Pekekerjaan	R	R P		R	P	ΔB	
Balok	892888,74	1005997,97	-113109,20	13502,385	12808,946	693,439	
Pelat	1660360,83	1909796,80	-249436,00	8392,880	8488,436	-95,557	
Kolom	512676,00	617189,52	-104513,50	7736,196	7914,747	-178,552	
Jumlah Total	umlah Total 3065925,57 3532984,29 -467058,		-467058,70	29631,461	29212,129	419,331	
Penyimpangan (%)	ngan (%) -15,234 1,4152			1,4152			

Dari Tabel 5.5.J dapat diketahui persentase penyimpangan panjang tulangan pada pada proyek ABAYO sebesar -15,234%, hasilnya negatif berarti panjang tulangan di lapangan lebih besar dari perencanaan dan persentase penyimpangan berat tulangan pada kolom sebesar 1,4152%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

Tabel 5.5.k. Rekapitulasi Analisis Panjang dan Berat Pada Proyek AKAKOM

Jenis Pekekerjaan	Panja	ang Tulangan	(cm)	Berat Tulangan (Kg)*			
Jeins Fekekerjaan	R P		ΔL	R	P	ΔΒ	
Balok	1497712,67	1498988,64	-1275,98	29164,808	27974,414	1190,394	
Pelat	2123731,43	2041426,23	82305,20	11128,772	9842,668	1286,104	
Kolom	779865,00	758003,59	21861,41	13765,992	13015,444	750,548	
Jumlah Total	nlah Total 4401309,10 4298418,46 102890,6		102890,63	54059,573	50832,527	3227,046	
Penyimpangan (%)	ngan (%) 2,338				5,9694		

Dari Tabel 5.5.k dapat diketahui persentase penyimpangan panjang tulangan pada pada kolom sebesar 2,338%, hasilnya positif berarti panjang tulangan di lapangan lebih kecil dari perencanaan dan persentase penyimpangan berat tulangan pada kolom sebesar 7,2107%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

Tabel 5.5.1. Rekapitulasi Analisis Panjang dan Berat Pada Proyek Lab UII

Jenis Pekekerjaan	Panja	ng Tulangan	(cm)	Berat Tulangan (Kg)*			
Jenis Pekekerjaan	R	P	ΔL	R	P	ΔB	
Balok	824335,68	819073,98	5261,70	12990,5514	11755,2699	1235,2815	
Pelat	714951,64	726194,98	-11243,30	3333,8902	3144,3182	189,5720	
Kolom	408176,00	410801,47	-2625,47	7264,9241	6988,8185	276,1056	
Jumlah Total	1947463,32	1956070,43	-8607,07	7,07 23589,3657 21888,4066 170		1700,9591	
Penyimpangan (%)	gan (%) -0,442 7,2107						

Dari Tabel 5.5.k dapat diketahui persentase penyimpangan panjang tulangan pada pada kolom sebesar 2,338%, hasilnya positif berarti panjang tulangan di lapangan lebih kecil dari perencanaan dan persentase penyimpangan berat tulangan pada kolom sebesar 7,2107%, hasilnya positif berarti berat tulangan di lapangan lebih kecil dari perencanaan.

5.4.2. Analisis Biaya

Analisis biaya yang terjadi pada proyek dapat ditinjau berdasarkan dua hal yaitu analisis biaya berdasarkan berat tulangan pada proyek, dan analisis biaya berdasarkan panjang tulangan pada tiap diameter.

5.4.2.1. Analisis biaya berdasarkan berat tulangan

Dengan telah diketahuinya perbedaan antara berat tulangan rencana dengan berat tulangan pelaksanaan di lapangan yan disebabkan oleh adanya penyimpangan pada diameter tulangan dan panjang tulangan, maka dengan itu dapat diketahui seberapa besar pengaruhnya terhadap biaya proyek secara keseluruhan khususnya pada pekerjaan pembesian pelat, balok dan kolom dalam

satu lantai. Penyimpangan biaya itu dapat diketahui berdasarkan harga satuan pekerjaan penulangan (kg) (RAB) pada tiap-tiap proyek yang kami teliti. Berikut ini kami tampilkan dalam bentuk tabel.

Tabel 5.6.a. Analisis Biaya Berdasarkan Berat Tulangan Proyek ABAYO

Jenis Pekekerjaan	Panj	ang Tulangan	(cm)	
Jenis Fekekerjaan	R	P	ΔL	
Balok	13502,3850	12808,9500	693,4350	
Pelat	8392,8797	8488,4364	-95,5567	
Kolom	7736,1959	7914,7474	-178,5515	
Total Dalam Satu Lantai	29631,4606	29212,1337	419,3269	
Harga Satuan (Rp)		3405		
Biaya Proyek Dalam Satu Lantai (Rp)	100895123,4 99467315,39 1427808,04			
Penyimpangan (%)		1,415		

Dari Tabel 5.6.a dapat diketahui persentase penyimpangan biaya berdasarkan berat tulangan pada proyek ABAYO sebesar 1,415%, hasil ini positif berarti biaya pelaksanaan lebih kecil dari biaya perencanaan.

Tabel 5.6.b. Analisis Biaya Berdasarkan Berat Tulangan Proyek AKAKOM

Ionia Dalvalvania an	Panj	ang Tulangan	(cm)	
Jenis Pekekerjaan	R	P	ΔL	
Balok	29164,8081	27974,4141	1190,39400	
Pelat	11128,7721	9842,6683	1286,10376	
Kolom	13765,9924	13015,4400	750,55244	
Total Dalam Satu Lantai	54059,5726	50832,5224	3227,05020	
Harg Satuan (Rp)		3265		
Biaya Proyek Dalam Satu Lantai (Rp)	176504504,5 165968185,6 10536318,9			
Penyimpangan (%)	5,969			

Dari Tabel 5.6.b dapat diketahui persentase penyimpangan biaya berdasarkan berat tulangan pada proyek AKAKOM sebesar 5,969%, hasil ini positif berarti biaya pelaksanaan lebih kecil dari biaya perencanaan.

Tabel 5.6.c. Analisis Biaya Berdasarkan Berat Tulangan Proyek Lab UII

Jenis Pekekerjaan	Panj	ang Tulangan	(cm)	
Jenis Fekekerjaan	R	P	ΔL	
Balok	12990,5514	11755,2699	1235,28149	
Pelat	3333,8902	3144,3182	189,57199	
Kolom	7264,9241	6988,8185	276,10560	
Total Dalam Satu Lantai	23589,3657	21888,4066	1700,95908	
Harg Satuan (Rp)		3110		
Biaya Proyek Dalam Satu Lantai (Rp)	73362627,26 68072944,4 5289982,746			
Penyimpangan (%)	7,211			

Dari Tabel 5.6.c dapat diketahui persentase penyimpangan biaya berdasarkan berat tulangan pada proyek Lab UII sebesar 7,211%, hasil ini positif berarti biaya pelaksanaan lebih kecil dari biaya perencanaan.

5.4.2.2 Analisis Biaya Berdasarkan Panjang Tulangan Pada Tiap Diameter Tulangan

Berdasarkan data panjang tulangan rencana dan panjang tulangan pelaksanaan pada tiap diameter tulangan yang terdapat dalam Lampiran 1 pada Tabel A11, Lampiran 2 pada Tabel B11, Lampiran 3 pada Tabel C11 maka dapat diketahui besarnya penyimpangan terhadap biaya proyek khususnya biaya pada pekerjaan penulangan balok, penulangan pelat lantai, penulangan kolom seperti pada table berikut ini :

Tabel 5.6.e. Analisis Biaya Berdasarkan Panjang Tulangan Tiap Diameter Pada Proyek ABAYO

Diameter	J	umlah Tulangar	1	Harga Tiap	Biaya	Biaya	Penyimpangan
Tulangan	Rencana	Pelaksanaan	Selisih	Batang	Rencana	Pelaksanaan	Biaya
mm	Batang	Batang	Batang	Rp/Batang	Rp	Rp	Rp
P 8	672,224	770,798	-98,574	13750	9243082,75	10598471,35	-1355388,604
P 10	1357,745	1551,309	-193,564	21750	29530953,75	33740975,52	-4210021,772
D 13	28,910	28,618	0,292	35750	1033532,50	1023094,69	10437,808
D 16	124,046	123,918	0,128	53750	6667461,75	6660577,58	6884,166
D 22	367,288	356,621	10,668	105000	38565271,50	37445166,50	1120105,000
Jumlah To	tal				85040302,25	89468285,65	-4427983,402
Penyimpangan (%)						-5,207	

Dari Tabel 5.6.e dapat diketahui persentase penyimpangan biaya berdasarkan panjang tulangan tiap diameter yang digunakan pada proyek ABAYO sebesar -5,207%, nilaianya negative berarti biaya pelaksanaan lebih besar dari biaya perencanaan.

Tabel 5.6.f. Analisis Biaya Berdasarkan Panjang Tulangan Tiap Diameter Pada Proyek AKAKOM

Diameter	J	umlah Tulangar	ì	Harga Tiap	Biaya	Biaya	Penyimpangan
Tulangan	Rencana	Pelaksanaan	Selisih	Batang	Rencana	Pelaksanaan	Biaya
mm	Batang	Batang	Batang	Rp/Batang	Rp	Rp	Rp
P 8	750,490	684,308	66,182	13750	10319230,63	9409234,71	909995,911
P 10	1092,440	1085,449	6,991	21750	23760570,60	23608525,40	152045,208
P 12	988,530	996,659	-8,129	35750	35339932,60	35630549,65	-290617,046
D 19	333,618	304,502	29,116	74500	24854565,58	22685396,93	2169168,903
D 25	497,943	500,337	-2,394	137500	68467093,75	68796272,57	-329178,819
Jumlah To	tal				162741393,42	160129979,26	2611414,156
Penyimpangan (%)						1,605	

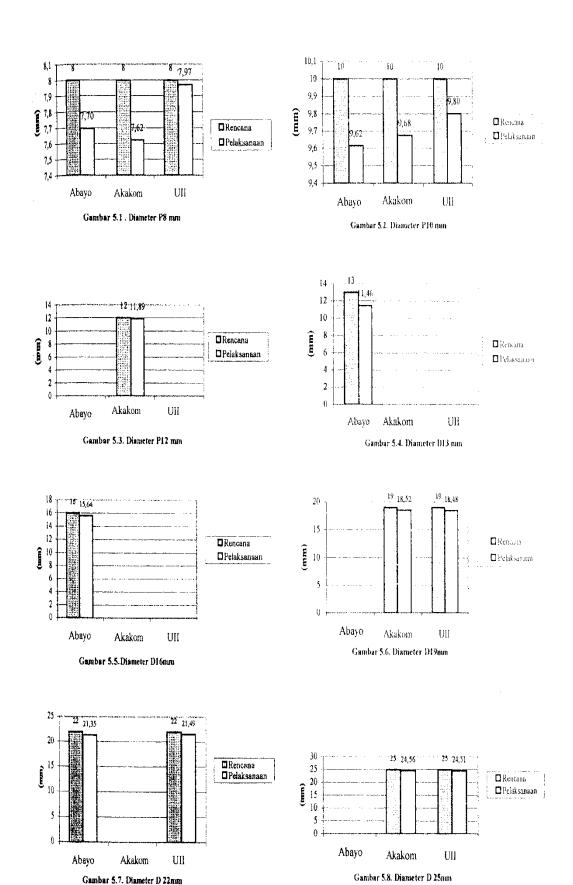
Dari Tabel 5.6.f dapat diketahui persentase penyimpangan biaya berdasarkan panjang tulangan tiap diameter yang digunakan pada proyek AKAKOM sebesar 1,605%, nilaianya positif berarti biaya pelaksanaan lebih kecil dari biaya perencanaan.

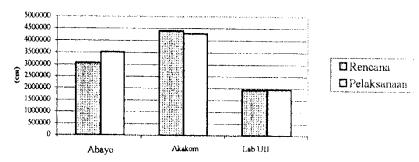
Tabel 5.6.g. Analisis Biaya Berdasarkan Panjang Tulangan Tiap Diameter Pada Proyek Lab UII

Diameter	J	umlah Tulangar	1	Harga Tiap	Biaya	Biaya	Penyimpangan
Tulangan	Rencana	Pelaksanaan	Selisih	Batang	Rencana	Pelaksanaan	Biaya
mm	Batang	Batang	Batang	Rp/Batang	Rp	Rp	Rp
P 8	448,638	463,609	-14,971	13750	6168774,33	6374621,28	-205846,947
P 10	757,641	758,004	-0,363	21750	16478701,66	16486586,80	-7885,140
D 19	10,667	10,689	-0,022	74500	794666,67	796322,22	-1655,556
D 22	321,631	323,050	-1,420	105000	33771238,67	33920290,83	-149052,167
D 25	102,840	97,843	4,997	137500	14140500,00	13453458,33	687041,667
Jumlah Total					71353881,33	71031279,47	322601,857
Penyimpangan (%)						0,452	

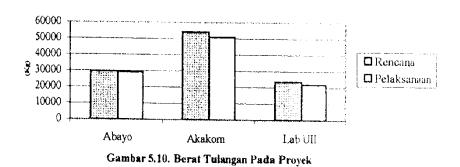
Dari Tabel 5.6.g dapat diketahui persentase penyimpangan biaya berdasarkan panjang tulangan tiap diameter yang digunakan pada proyek Lab UII sebesar 0,452%, nilaianya positif berarti biaya pelaksanaan lebih kecil dari biaya perencanaan.

5.4.2.3 Analisis BIaya Riil Tulangan

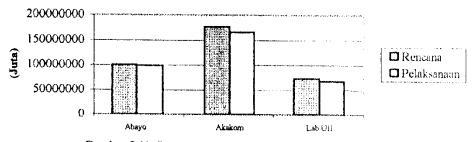

Berdasarkan analisis biaya berdasarkan berat tulangan dengan analisis biaya berdasarkan panjang tulangan pelaksanaan pada tiap diameter tulangan yang terdapat pada Tabel 5.6.e. – 5.6.g. maka dapat diketahui besarnya penyimpangan biaya riil tulangan pada ketiga proyek tersebut di atas, khususnya biaya pada pekerjaan penulangan balok, penulangan pelat lantai, penulangan kolom seperti pada table berikut ini :


Tabel 5.6.h. Analisis Biaya Riil Tulangan Di Lapangan Pada Tiap Proyek Sampel

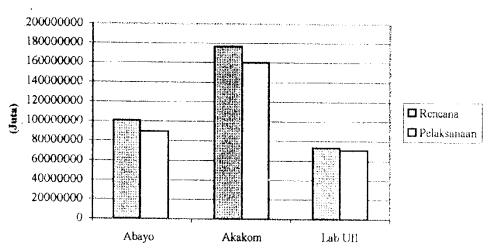
Proyek Sampel	Biaya Rencana Berdasarkan Berat	Biaya Pelaksanaan Berdasarkan Panjang	Selisih Biaya Riil	Penyimpangan Biaya Riil
	Rp	Rp	Rp	(%)
ABAYO	100895123,3	89468285,65	11426837,65	11,33
AKAKOM	176504504,5	160129979,26	16374525,24	9,28
				_
UII	73362918,93	71031279,47	2331639,46	3,18


Dari table 5.6.h maka dapat diketahui biaya sesungguhnya atau biaya pelaksanaan di lapangan yang dikeluarkan oleh kontraktor, dengan itu maka kita dapat mengetahui persentase penyimpangan biaya yang sesungguhnya. Jadi Pada proyek Abayo kontraktor mengalami keuntungan sebesar 11,33%, pada Proyek AKAKOM sebesar 9,28%, dan pada Proyek UII sebesar 3,18%.

Untuk memudahkan pembacaan analisis data diameter, panjang, berat, dan biaya tulangan yang diperoleh maka kita buat dalam bentuk diagram seperti berikut ini :



Gambar 5.9. Panjang Tulangan pada Proyek



180000000
160000000
140000000
120000000
100000000
60000000
40000000
200000000
0
Abayo Akakom Lab Uli

Gambar 5.11. Biaya Berdasarkan Panjang Tulangar. Pada Proyek

Gambar 5.12. Biaya Berdasarkan Berat Tulangan Pada Proyek

Gambar 5.13. Biaya Tulangan Riil Pada Proyek

5.5. Pembahasan

5.5.1. Diameter Tulangan

Dari hasil penelitian terdapat berbagai ukuran diameter yang tidak sesuai dengan ukuran diameter yang ditawarkan produsen, diantaranya adalah :

Pada proyek ABAYO berdasarkan table 5.4.a yaitu, diameter rata-rata yang terukur atau ada di lapangan ternyata lebih kecil dari ditawarkan produsen, untuk φ P8 mm diameter yang terukur adalah 7.70 mm (selisih 3,75%), φ P10 mm diameter rata-rata yang ada di lapangan adalah 9,62 mm(selisih 3,80%). φ D13 mm diameter rata-rata yang ada di lapangan adalah 11,46 mm (selisih 11,85%). φ D16 mm diameter rata-rata yang ada di lapangan adalah 15,64 mm (selisih 2,25%), φ D22 mm diameter rata-rata yang di lapangan adalah 21,35 mm (selisih 2,96%).

Dan pada proyek AKAKOM didapatkan hasil berdasarkan table 5.4.b, yaitu untuk φ P8 mm diameter rata-rata yang ada di lapangan adalah 7,62 mm (selisih 4,75%), φ P10 mm diameter rata-rata yang ada di lapangan adalah 9,68 mm (selisih 3,20%), φ P12 mm diameter rata-rata yang ada di lapangan adalah 11,89 mm (selisih 0,92%), φ D19 mm diameter rata-rata yang ada di lapangan adalah 18,52 mm (selisih 2,53%), φ D25 mm diameter rata-rata yang ada di lapangan adalah 24,56 mm (selisih 1,76%).

Sedangkan pada proyek Laboratorium Struktur UII berdasarkan tabel 5.4.c. didapatkan hasil yaitu untuk φ P8 mm diameter rata-rata yang ada di lapangan adalah 7,97 mm (selisih 0,38 %), φ P10 mm diameter rata-rata yang ada

di lapangan adalah 9,80 mm (selisih 2,00%), φ D19 mm diameter rata-rata yang ada di lapangan adalah 18,48 mm (selisih 2,74%), φ D22 mm diameter rata-rata yang ada di lapangan adalah 21,49 mm (selisih 2,32%), φ D25 mm diameter rata-rata yang ada di lapangan adalah 24,51 mm (selisih 1,96%).

Jadi dapat diambil kesimpulan diameter rata-rata yang ada di lapangan pada proyek ABAYO, AKAKOM, Lab UII berdasarkan pada tabel 5.4.a, tabel 5.4.b, tabel 5.4.c, maka akan didapat untuk φ P8 mm diameter yang ada di lapangan adalah berkisar antara 7,62 mm sampai 7,97 mm (penyimpangan antara 0,38% sampai 4,75%), untuk φ P10 mm diameter yang ada di lapangan adalah berkisar antara 9,62 mm sampai 9,80 (penyimpangan antara 2,00% sampai 3,80%), untuk \(\phi \) P12 mm rata-rata diameter yang ada dilapangan adalah 11,89 (penyimpangan 0,92%), untuk φ D13 mm rata-rata diameter yang ada dilapangan adalah 11,46 mm (penyimpangan 11,85%), untuk ϕ D16 mm rata-rata diameter yang ada dilapangan adalah 15,64 mm (penyimpangan 2,25%), untuk φ D19 min diameter yang ada dilapangan adalah berkisar antara 18,48 mm sampai 18,52 mm (penyimpangan antara 2,53% sampai 2,74%), untuk φ D22 mm diameter yang ada dilapangan adalah berkisar antara 21,35 mm sampai 21,49 mm (penyimpangan antara 2,32% sampai 2,96%), untuk φ D25 mm diameter yang ada dilapangan adalah berkisar antara 24,51 mm sampai 24,56 (penyimpangan antara 1,76% sampai 1,96%). Dengan adanya penyimpangan pada diameter tulangan yaitu lebih kecilnya diameter tulangan yang ada dilapangan dengan diameter tulangan yang ditawarkan produsen akan menyebabkan kerugian bagi pembeli tulangan (dalam hal ini adalah kontraktor dan pemilik proyek).

Adanya perbedaan diameter yang ditawarkan produsen dengan diameter yang ada di lapangan dapat disebabkan oleh alat cetakan yang sering dipakai sehingga banyak meninggalkan sisa tulangan, kemudian berakibat pada berkurangnya ukuran diameter tulangan untuk pencetakan tulangan berikutnya, dan perbedaan diameter tersebut juga dapat disebabkan oleh adanya kebijakan dari pabrik dengan memberikan toleransi tertentu dengan tetap memperhatikan mutu dan kekuatan standar yang disyaratkan oleh peraturan – peraturan yang ada.

Terjadinya penyimpangan pada diameter tulangan dilapangan akan sangat berpengaruh terhadap konstruksi bangunan, karena dengan adanya penyimpangan pada diameter akan rnempengaruhi luas tulangan yang diperlukan, dan mempengaruhi momen nominal dilapangan yang menyebabkan berkurangnya kekuatan konstniksi dalam menahan beban.

5.5.2. Panjang Tulangan

Pada penelitian ini kami tidak mengukur panjang tulangan ash perbatang dari produsen tetapi yang kami ukur adalah panjang tulangan yang terpasang dilapangan. Dari hasil penelitian berdasarkan tabel 5.5.j pada proyek ABAYO terdapat penyimpangan panjang tulangan rata-rata dalarn satu lantai proyek, yaitu panjang tulangan pelaksanaan lebili besar dari panjang tulangan perencanaan sebesar 15.234 %, sedangkan pada proyek AKAKOM berdasarkan tabel 5.5.k. terdapat penyimpangan rata-rata yaitu panjang tulangan pelaksanaan lebili kecil dari panjang tulangan perencanaan sebesar 2.338 %, dan pada proyek Lab UII berdasarkan tabel 5.5.1. terdapat penyimpangan panjang tulanganpelaksanaan

lebih kecil dari panjang tulangan perencanaan sebesar 0.442 %. Penyimpangan panjang tulangan terkecil pada pekerjaan balok proyek AKAKOM sebesar 0.085%, sedangkan penyimpangan panjang tulangan terbesar pada pekerjaan kolom proyek ABAYO sebesar 20.386% yang disebabkan karena adanya sengkang dalam (di gambar rencana tidak ada) . Jadi rata-rata penyimpangan panjang tulangan pada ketiga proyek yang diteliti berkisar antara 2,338 % sampai 15,234 %. Penyimpangan panjang tulangan dilapangan yang paling besar yaitu pada pekerjaan pelat lantai dan yang paling kecil adalah pada pekerjaan kolom.

Dari hasil penelitian pada ketiga proyek maka dapat kami simpulkan bahwa penyimpangan panjang yang terjadi terdapat kecenderungan bahwa panjang tulangan pelaksanaan lebih besar dari pada panjang tulangan rencana, tetapi dalam penelitian yang kami lakukan ada penyimpangan, panjang tulangan pelaksanaan lebih kecil dari panjang tulangan rencana maka hal ini berarti berkurangnya tulangan yang terpasang dilapangan sehingga akan dapat mengakibatkan berkurangnya kekuatan dari konstruksi bangunan tersebut.

- Adanya penyimpangan panjang tulangan tersebut bisa diakibatkan oleh:
- a) Kualitas dari tukang besi, dan kepala tukang atau bass borong jika menggunakan bass borong) yang kurang baik (kurang biasa membaca gambar). Sehingga antara gambar dan realisasinya dilapangan tidak sesuai.
- b) Kurang ketatnya pengawasan kepada para tukang besi oleh pengawas dilapangan maupun pelaksana dilapangan, sehingga menyebabkan terjadinya penyimpangan panjang tulangan di lapangan.

c) Adanya unsur kesengajaan atau kebijakan dari kontraktor.

5.3. Berat Tulangan

Dari hasil penelitian berdasarkan tabel 5.5.j. terdapat penyimpangan berat tulangan rata-rata yaitu berat tulangan rencana lebih besar dari berat tulangan yang ada dilapangan, berdasarkan tabel 5.5.j. dalam proyek ABAYO terdapat penyimpangan sebesar 1,415 %, dan dalam proyek AKAKOM berdasarkan tabel 5.5.k. terdapat penyimpangan sebesar 5,969 %, sedangkan pada proyek Laboratorium Struktur UII berdasarkan tabel 5.5.1. terdapat penyimpangan berat sebesar 7,211 %. penyimpangan pada berat tulangan diketahui bahwa berat tulangan rencana lebih besar dari berat tulangan yang ada dilapangan.

Jadi dapat disimpulkan bahwa penyimpangan berat tulangan yang terjadi pada ketiga proyek yang diteliti sebesar antara 1,415% sampai 7,21 1 %. Penyimpangan berat rata-rata yang terjadi dalam satu proyek dapat disebabkan antara lain oleh:

- a. Adanya perbedaan diameter tulangan yang ditawarkan produsen dengan diameter yang ada dilapangan.
- b. Adanya perbedaaan berat persatuan panjang tulangan seharusnya dengan berat persatuan panjang tulangan yang ada di lapangan.
- c. Adanya perbedaan panjang tulangan rencana dengan panjang tulangan yang ada di lapangan. Persentase penyimpangan berat tulangan itu bisa menjadi kecil nilainya apabila penyimpangan pada panjang jang tulangan dilapangan semakin besar, jadi dalam hal ini penyimpangan berat tulangan berkebalikan dengan penyimpangan pada panjang tulangan.

5.5.4. Biaya Tulangan.

Dari hasil penelitian berdasarkan tabel 5.6.a. sampai tabel 5.6.c. penyimpangan biaya yang terjadi pada proyek berdasarkan berat tulangan pada proyek ABAYO sebesar 1.415 %, pada proyek AKAKOM sebesar 5.969 %, dan pada proyek Lab UII sebesar 6.746%. Jadi penyimpangan biaya yang terjadi pada ketiga proyek yang diteliti berdasarkan berat tulangan sebesar antara 1.415 sampai 7,211 %. Penyimpangan biaya tulangan berdasarkan berat tulangan diketahui biaya tulangan rencana lebih besar dari biaya tulangan realisasi dilapangan sehingga dengan hasil ini seolah-olah kontraktor mendapatkan keuntungan dari biaya tulangan karena harga satuan pekerjaan penulangan dalam rencana anggaran biaya adalah dalam berat (kg), narnun riilnva dilapangan tidak demikian sebab kontraktor membeli tulangan dalam panjang tulangan (batang). Jadi sebenarnya kontraktor dan owner mengalami kerugian.

Sedangkan untuk penyimpangan biaya berdasarkan panjang tulangan pada tiap diameter berdasarkan pada tabel 5.6.e sampai tabel 5.6.g. pada proyek ABAYO biaya tulangan pelaksanaan lebih besar dari biaya tulangan rencana sebesar 5.207 %, sedangkan pada proyek AKAKOM terdapat penyimpangan biaya tulangan pelaksanaan lebih kecil dari Biaya tulangan rencana sebesar sebesar 1.605 %, dan untuk proyek Laboratorium UII terdapat penyimpangan biaya tulangan pelaksanaan lebih kecil dari Biaya tulangan rencana sebesar 0.452. Jadi penyimpangan Biaya berdasarkan panjang tulangan pada tiap diameter sebesar antara 0,452% sampai 5,207 %. Penyimpangan Biaya berdasarkan

panjang tulangan pada ketiga proyek yang diteliti ada yang biaya rencana panjang tulangan lebih besar dari biaya panjang tulangan yang ada dilapangan dan ada yang Biaya rencana panjang tulangan lebih kecil dari Biaya pelaksanaan panjang tulangan yang ada dilapangan.

Dengan adanya perbedaaan penyimpangan biaya antara analisis Biaya berdasarkan berat tulangan dengan analisis biaya berdasarkan panjang tulangan tiap diameter maka kita dapat mengetahul penyimpangan Biaya riil penulangan dilapangan yang dikeluarkan oleh kontraktor. Dari Tabel 5.6.H. Dapat kita lihat penyimpangan biaya rill dimana dalam hasil ini pada ketiga proyek ternyata biaya rill tulangan di lapangan masih lebih kecil dari biaya yang direncanakan artinya kontraktor mengalami keuntungan, pada proyek Abayo sebesar 11,33 %, Akakom sebesar 9,28 %, dan Lab UII sebesar 3,18 %. Dari ternyata yang diruglikati adalah pemilik.

BAB VI

KESIMPULAN DAN SARAN

6.1. Kesimpulan

Berdasarkan penelitian yang kami lakukan pada tiga proyek konstruksi bangunan gedung ABAYO, AKAKOM clan Lab. Struktur UII maka dapat kami simpulkan beberapa hal diantaranya adalah:

- 1) Diameter tulangan pelaksanaan lebih kecil dari diameter tulangan rencana, penyimpangan diameter tulangan dilapangan yang digunakan pada ketiga proyek yang diteliti untuk P8 mm, PIO mm, P12 min, DD mm, D16 mm, D19 mm, D22 mm, D25 mm lebih kecil berkisar 0,38 % sampai 11,85
- 2) Panjang tulangan pelaksanaan cenderung lebih besar dari panjang tulangan rencana, penyimpangan berkisar antara 15,234 '/'o sampai 0,442%.
- 3) Berat tulangan pelaksanaan lebih kecil dari berat tulangan rencana, penyimpangan berkisar antara 1,415 % sampai 7,211%.
- 4) Biaya tulangan berdasarkan berat tulangan, biaya pelaksanaan lebih kecil dari biaya rencana penyimpangannya berkisar antara 1,415 % sampai 7,211 %. Sedangkan biaya tulangan berdasarkan panjang tulangan bervariasi pada biaya pelaksanaannya ada yang lebih kecil dari biaya rencana penyimpangannya berkisar antara 0,452 %, dan 1,605 % dan ada pula yang lebih besar dari biaya, rencana penyimpangannya sebesar 5,207 %.

5) Biaya tulangan sesungguhnya yang dikeluarkan oleh kontraktor di lapangan ternyata masih menguntungkan bagi kontraktor sebesar 3,178 % sampai 11,325 %.

6.2. Saran-saran.

- 1) Karena kemampuan dari tukang besi memegang peranan yang sangat penting maka sangat diperlukan untuk mengadakan suatu pelatihan bagi para tukang besi untuk menambah pengetahuan mereka dalam pekerjaan penulangan.
- 2) Pelaksana dan bass borong hendaknya menggunakan tukang besi dengan kemampuan yang baik (dapat diandalkan), sebab kemampuan sumberdaya manusia memegang peranan yang sangat penting pada pekerjaan pemasangan tulangan dalam proyek.
- 3) Pelaksana atau pengawas di lapangan hendaknya meningkatkan pengawasan mereka pada waktu pemasangan tulangan sehingga penyimpangan pada pekerjaan penulangan (terutama pada panjang tulangan) dapat lebih diperkecil
- 4) Pengawasan dan pengecekan diameter tulangan perlu dilakukan oleh pelaksana atau pengawas pada setiap tulangan yang masuk ke proyek pada waktu pelaksanaan proyek dilapangan.
- 5) Dalam merencanakan penulangan perencana harus mempertimbangkan toleransi penyimpangan tulangan dan kalau perlu perencana dapat mencantumkan toleransi penyimpangan tiap ϕ diameter tulangan yang akan digunakan dalam proyek yang direncanakan

DAFTAR PUSTAKA

- Allan Ashworth, Alih Bahasa Ir Laurentius Wahyudi, 1994. PERENCANAA BIAYA BANGUNAN, PT Gramedia Pustaka Utama, Jakarta.
- Erina dan Wisnungkoro, 1998, APLIKASI METODE COMPRASS UNTUK MENGIDENTIFIKASI PENYEBAB KENAIKAN BIAYA PROYEK KONSTRUKSI GEDUNG, Yogyakarta.
- Handri Rahmanto dan Nuri Sriharjo, 1999, KARAKTERISTIK FISIK DAN MEKANIK BAJA TULANGAN DI YOGYAKARTA DAN IMPLIKASINYA PADA DISAIN ELEMEN BETON BERTULANG, Yogyakarta.
- Iman Soeharto, 1997, MANANAJEMEN PROYEK DARI KONSEPTUAL. SAMPAI PERASIONAL, Erlangga Jakarta.
- Lucio Canonica, MSc.CE.ETHZ, 1991, MEMAHAMI BETON BERTULANG. Edisi Ke-1, Angkasa, Bandung.
- RA Burgess dan G White, Alih Bahasa W Sutjiadi dan M Wreksoremboko, 1984, PRODUKSI BANGUNAN DAN MANAJEMEN PROYEK, Edisi pertama, Percetakan Andi Offset, Yogyakarta.
- , 1979, PERATURAN BETON BERTULANG INDONESIA 1971 N.I-2, Jilid 7, Departemen Pekerjaan Umum dan Tenaga Listrik, Bandung.
- , 1982, PERSYARATAN UMUM BAHAN BANGUNAN DI INDONESIA, Departemen Pekerjaan Umum Direktorat Jenderal Cipta Karya, Bandung.