Analysis of Pre-Olympic Middle School Mathematics Test Instruments Based on Item Response Theory

Dwi Cahyani Nur Apriyani, Hari Purnomo Susanto, Taufik Hidayat

Abstract


Junior high school of mathematics Olympiad is one of the routine activities every year in Indonesia. Analysis of the items on the Mathematical Olympiad test instrument has been carried out by several researchers using the concept of classical test theory. The theory has many weaknesses when compared to the concept Item Response theory (IRT). The purpose of this article is to describe the analysis of pre-Olympiad mathematics test instrument for junior high school students in Pacitan East Java based on the IRT. This analysis was carried out using a quantitative descriptive method. IRT-based item analysis was performed using R software with the package irtawsi. The results of the analysis with the package show that the instruments used fit to 2PL model. From the 15 items used, there were two items that did not fit, namely items 4 and 9. Furthermore, from the 13 test items that were fit, there were 3 items that did not meet the quality of the discriminant parameter used. These three items are 1, 6 and 13 items, these three items must be dropped because they can provide biased information when used to estimate students' math olympiad abilities. Based on this information it can be concluded that there are 10 test items that have quality that meets the qualification parameters of difficulty and discriminant with a standard error of 0.25. 

Keywords


IRT; Item Parameters; Item Quality; Junior High School Mathematics Olympiad

References


Akhsani, L., & Purwanto, J. (2015). Upgrading Higher-Order Thinking of UMP Mathematics Education Student Through Project Based Learning Model in Advanced Calculus Course 1. Alphamath, 1(1). https://doi.org/10.30595/alphamath.v1i1.207

Cappelleri, J. C., Jason Lundy, J., & Hays, R. D. (2014). Overview of Classical Test Theory and Item Response Theory for the Quantitative Assessment of Items in Developing Patient-Reported Outcomes Measures. Clinical Therapeutics, 36(5), 648–662. https://doi.org/10.1016/j.clinthera.2014.04.006

Dewi, S. S., Hariastuti, R. M., & Utami, A. U. (2019). Analisis Tingkat Kesukaran Dan Daya Pembeda Soal Olimpiade Matematika (Omi) Tingkat Smp Tahun 2018. Transformasi : Jurnal Pendidikan Matematika Dan Matematika, 3(1), 15–26. https://doi.org/10.36526/tr.v3i1.388

Eleje, L. I., Onah, F. E., & Abanobi, C. C. (2018). Comparative study of Classical Test Theory and Item Response Theory using diagnostic quantitative economics skill test item analysis results. European Journal of Educational & Social Sciences, 3(1).

Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item Response Theory and health outcomes measurement in the 21st century. Medical Care, 38(9 SUPPL. 2). https://doi.org/10.1097/00005650-200009002-00007

Kemendikbudristek. (2023). Pedoman Olimpiade Sains Nasional (OSN) Jenjang SMP/MTs Tahun 2023.

Kustriyono, K. (2004). Penyusunan Perangkat Soal Ujian Akhir Mata Pelajaran Sains-Biologi SMP dalam Rangka Pengembangan Bank Soal. Jurnal Penelitian Dan Evaluasi Pendidikan, 6(2). https://doi.org/10.21831/pep.v6i2.2048

Prawoto, B. P., Sulaiman, R., Savitri, D., & Fardah, D. K. (2019). Pelatihan Pendamping Olimpiade Matematika Smp Kabupaten Tulungagung. Jurnal ABDI, 5(1), 21. https://doi.org/10.26740/ja.v5n1.p21-24

Retnawati, H. (2014). Teori Respons Butir dan Penerapannya.

Setiani, N. W., Asikin, M., & Dewi, N. R. (2022). Numerical Literacy Skills of Vocational High School Students in Solving HOTS Problems. AlphaMath : Journal of Mathematics Education, 8(2), 121. https://doi.org/10.30595/alphamath.v8i2.14161

Susanto, H. P., & Retnawati, H. (2023). Kalibrasi Instrumen Literasi Matematika Siswa Menggunakan IRT dan Aplikasinya untuk Estimasi Skor. Edumatica: Jurnal Pendidikan Matematika, 13(1), 23–36. https://doi.org/10.22437/edumatica.v13i01.23135

Susanto, H. P., Retnawati, H., Abadi, A. M., Haryanto, H., & Ali, R. M. (2023). irtawsi: Items Response Theory Analysis with Steps and Interpretation (R package version 0.3.4). CRAN R Pgroam. https://cran.r-project.org/package=irtawsi

Suwarto, Widoyoko2, E. P., & Setiawan, B. (2019). The Effects of Sample Size and Logistic Models on Item Parameter Estimation. Proceedings of the 2nd International Conference on Education, 323–330.

Ugi, L. E., & Ekawati, D. (2016). Kualitas Tes Pra Olimpiade Bidang Studi Matematika tingkat SMPdi Kota Baubau. Prosiding Seminar Nasional, 118–127. https://journal.uncp.ac.id/index.php/proceding/article/view/379

Wulandari, F., Hadi, S., & Haryanto, H. (2020). Computer-based Adaptive Test Development Using Fuzzy Item Response Theory to Estimate Student Ability. Computer Science and Information Technology, 8(3). https://doi.org/10.13189/csit.2020.080302


Full Text: PDF

DOI: 10.30595/alphamath.v9i2.18021

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2549-9084