Formulation and evaluation of antibacterial activity of hand sanitizers containing red betel (Piper crocatum) and white galangal (Alpinia galanga) extract

Faridah BD 1,2, Lita Angelina Saputri 1, Lin Prima Fitriah 1, Lisa Rahmawati 1, Nike Sari Oktavia 1, Fithriani Amin 2

1 Diploma Program of Midwifery, Department of Midwifery, Padang Health Polytechnic, Padang, West Sumatera, Indonesia
2 Bachelor of Pharmacy, Department of Pharmacy, Andalas University, Padang, West Sumatera, Indonesia

ABSTRACT

Background: The COVID-19 outbreak has changed how people live worldwide, making hand hygiene a must, whether it involves hand sanitizer (HS). The majority of HS are made of alcohol. Several side effects of alcohol are dryness and allergies. Alternative natural ingredients and HS are needed. Red betel (Piper crocatum) and white galangal (Alpinia galanga) are familiar and easy to be found. These two plants have the potential to be the composition of HS because of their compounds, such as antioxidants, antibiotics, antifungals, and antivirals. However, there is a need for further research on their formulation and effectiveness in germ-killing.

Purpose: To formulate and identify the antibacterial activity of HS containing red betel and white galangal extract.

Method: This research was an in vitro laboratory experiment with several steps, including extraction, specific and nonspecific tests, formulation, and antibacterial activity tests.

Results: Red betel and white galangal leaves had been extracted at a concentration of 10% and formulated into HS. The HS containing 10% red betel extract produced an inhibition zone of 0 mm against E. coli and 1.05 mm against S. aureus, and the HS containing 10% white galangal extract produced an inhibition zone of 1.47 mm against E. coli and 1.40 mm against S. aureus.

Conclusion: The formulation of HS containing 10% of white galangal extract is more effective than the HS containing 10% of Red betel extract.

INTRODUCTION

The COVID-19 outbreak hit the world, including Indonesia. This condition has changed the way of living, resulting in a need for hand hygiene. Millions of people in Indonesia need access to public hand sanitary facilities. Hand sanitizers (HS) have emerged as an alternative to soap and water. Most HS available in the market are alcohol-based, and frequent use could lead to dryness of the hands, allergies, and dermatitis. There can also be skin toxicity if a concentration of alcohol is too high. The research found that participants experienced hand crack (36.47%), redness (24.71%), and skin disease (8.40%) while using alcohol-based HS. Given these concerns, it is crucial to make an alternative HS made from natural ingredients, which is considered safer, consists of no dangerous compounds, and is less toxic.

Various studies indicate that certain plants contain antioxidants, antibiotics, antifungals, and antivirals. Red betel (Piper crocatum) is familiar and widely used in Indonesia as ornament plant, vegetables, medicine or material in ceremonial events. This plant contains antiseptic properties twice as potent as those found in green betel leaves. The composition of red betel extract is identified to have antibacterial activity. A study found that red betel serves as a disinfectant and antifungal agent, making it effective in...
treating conditions such as bad breath and vaginal discharge.9 Research has found that red betel contains chemical compounds such as flavonoid, alkaloid, polyphenols, tannin, and essential oil with high potential as an antibacterial agent.10 Another research found that ethanol extract of red betel has an antibacterial effect toward gram-positive and gram-negative bacteria.11

Meanwhile, white galangal (Alpinia galanga) is familiar in Indonesia, widely known as a cooking spice in West Sumatera, and traditionally used to cure gastrointestinal and skin infections.12 White galangal contains chemical compounds such as flavonoid, quinone, essential oil and fenol.13 A study found that white galangal extract can inhibit microbial growth such as E. coli, S. enteritidis, and S. aureus.14 Red betel and White galangal have the potential to be the natural active ingredients in HS because of their capability to kill bacteria as proven by many previous types of research. However, only a few researchers have identified their antibacterial activity as a HS formula.

A previous study formulated HS from red betel and aloe vera, which resulted in a HS with no allergic reaction. However, there was no result regarding its antibacterial activity.15 Another research found that hand antiseptic gel containing white galangal effectively reduces the hand colony. However, no data were found about its antibacterial activity that proved with inhibition zone to specific germs.16 Considering these facts, it is necessary to formulate HS containing red betel and white galangal and investigate their antibacterial activity to compare their effectiveness in killing specific germs. This study aims to formulate and identify the antibacterial activity of HS containing red betel and white galangal extract.

METHOD

Study Design

This research was an in vitro experiment with a post-test-only control group design.

Study Site

This research was conducted from June until November 2022 at the pharmacy laboratory of Baiturrahmah University Padang West Sumatera.

Materials

The materials used were red betel and white galangal leaves, ethanol 70\%, aquadest, NaCl 0.9\%, nutrient agar, DMSO 50 ml, glycerin, glycol propylene, carbophol, methylparaben, nipagin and triethanolamine (TEA).17

Red Betel and White Galangal Extraction

The amount of 20 kg of red betel leaves is dried using a cabinet dryer at 50°C for three days, and 20 kg of white galangal is cut into smaller pieces before drying using a 50°C cabinet dryer. After drying, the two ingredients are processed into simplicia by grinding them using a chopper, resulting in approximately 1000 gr of each.18 About 1 kg of red betel simplicia is macerated with Et-Oh (1:10) for 24 hours (during the first 6 hours while stirring occasionally, then let stand for 18 hours). After that, filter it to obtain macerate 1. Then proceed with the second maceration with Et-Oh (1:5) for 24 hours (during the first 6 hours, the chili is stirred occasionally, then let stand for 18 hours). After that, filter it to obtain macerate 2. Combine macerate 1 and 2 and evaporate the solvent in-vacuo to obtain a thick extract.

Specific and Nonspecific Test of The Extracts

A specific test is carried out by quantifying total flavonoid levels. Simplicia powder is added with ethanol and extracted for 1 hour with magnetic stirring. Filter the mixture into a 25-ml volumetric flask, adjusting the volume with ethanol P through the filter.19 Accurately weigh about 0.25 g of the extract, transfer it to an Erlenmeyer flask, add 50 ml of ethanol P, and stir for 30 minutes using a magnetic stirrer. Filter the solution into a 50-ml graduated flask, adjusting the volume with ethanol P. Preparation of the reference solution: Weigh approximately 10 mg of quercetin reference, transfer it to a 25-ml volumetric flask, dissolve it, and add ethanol P to reach the desired volume. If necessary, perform quantitative dilution in 20, 40, 60, 80, and 100 µg/mL increments. Measurement process: Pipette 0.5 mL of the Test solution and the standard Comparison solution separately, add 1.5 mL of ethanol P to each, along with 0.1 mL of aluminum chloride at 10%, 0.1 mL of 1 M sodium acetate, and 2.8 mL of distilled water. Shake the solutions and let them stand for 30 minutes at room temperature. Measure the absorbance at a wavelength of 438 nm. Similarly, blank measurements should be conducted, excluding adding aluminum chloride. Construct a calibration curve and calculate the concentration of the test solution.

Nonspecific tests include moisture content tests and ash content tests. A moisture content test is carried out by measuring 1-2 grams of the sample and placing it in a bottle with a known weight. Subject the sample to drying in an oven at 105°C for 3 hours. Allow the sample to cool in a desiccator. Weigh the sample and repeat the process until a consistent weight is achieved. Ash content test is carried out by weighing 2 grams of the test material, which has been refined, and putting it in a silicate crucible that has been heated and tarred, heated slowly until the charcoal runs out, cooled and weighed, heated to a constant weight. The total ash content is calculated by weight of the test material, expressed in % b/b.19

Hand Sanitizer Formulation

HS formulation is conducted by adding carbomer, glycolpropylene, glycerin, nipagin, and TEA.17 At this stage,
making the right formula for HS uses 10% of red betel extract and 10% of white galangal extract.

In Vitro Procedure

Sterilization of Tools and Materials

The tools used are first washed and dried. Petri dishes, test tubes, Erlenmeyer, measuring cups, vials, disc paper, and pipettes were closed with cotton wrapped in gauze; after being encased in parchment, the items were subjected to sterilization in an autoclave at 121°C and 15 lbs pressure for 5 minutes. Tweezers and needle loops undergo sterilization through flaming using a spirit lamp. The laminar airflow cabinet is cleared of dust and sterilized by activating the UV lamp for 5 minutes. Similarly, the aseptic cabinet is cleaned and then treated with 70% ethanol, allowing it to sit for 15 minutes. The media were placed in an Erlenmeyer flask, covered with gauze-wrapped cotton, further enclosed in parchment paper, and subsequently subjected to sterilization in an autoclave at 121°C and 15 lbs pressure for 15 minutes.

Production of Seed Media Nutrient Agar

Twenty grams of nutrient agar powder is dissolved in 1 liter of distilled water in an Erlenmeyer, then heated while stirring until a clear solution is formed. Then Erlenmeyer's mouth was gagged with cotton wrapped in gauze. Then sterilized in an autoclave at 121°C and 15 lbs pressure for 15 minutes.

Microbial Rejuvenation Test

The microbes from pure culture stock were planted on NA slanted agar media by scraping one ose of the microbial culture on the surface of the slanted agar, then incubated for 18-24 hours at 37°C. Rejuvenation is carried out every two weeks. The bacteria used in this study were Escherichia coli and Staphylococcus aureus.

Preparation of Suspension Culture Stock and Preparation of Test Bacterial Suspensions

Bacterial colonies were taken from pure culture and then suspended in 10 ml of 0.9% NaCl. The transmittance of this suspension was measured with a UV-Vis Spectrophotometer at a wavelength of 580 nm at 25%. Transmittance was adjusted by adding bacteria or physiological NaCl.

Experimental Procedure

15 mL of sterile NA was poured into a petri dish and allowed to solidify. Next, the bacterial suspension was inoculated using the sterile cotton swap method and then left for 5 minutes. A sterile disc was placed on the surface of the test microbial inoculum, which was dripped with 10 µL of the test solution and then incubated for 24 hours. After that, measure the diameter of the inhibition formed (indicated by the clear area around the disc). DMSO was used as a negative control, and 3 mg/mL chloramphenicol was used as a positive control. The antimicrobial activity test in this research uses a well-diffusion method. This method allows the samples to be absorbed by the bacteria and left for 18-24 hours in a 37°C incubator. The measurement of the transparent/inhibition zone reflects the activity of the bacteria.

Statistical Analysis

All experiments were performed in triplicate, and results were expressed as mean±SD. Mean and standard deviation were calculated in Microsoft Excel.

Ethical Consideration

This research has been approved by the research ethics committee of Perintis University, certificate number 185/KEPK.F2/EIK/2022.

RESULTS

Results of Extraction

Figure 1a and Figure 1b show the result of the extraction of red betel and white galangal. Both of these extracts resulted in a thick and dark-colored appearance. The red betel extract is blackish red-colored, and the white galangal extract is blackish green-colored.

![Figure 1a. Red betel extract](image)

![Figure 1b. White galangal extract](image)

Specific and Nonspecific Test

Table 1 shows that the white galangal extract's level of flavonoid is higher than the flavonoid level of the red betel extract. Red betel extract's moisture content level is higher than white galangal extract's. Besides that, the ash content level of red betel extract is higher than that of white galangal extract. The higher the ash content, the higher the mineral content (Table 2).

Hand Sanitizer Formulation

Figure 2a shows the appearance of HS containing 10% red betel extract, and Figure 2b shows the appearance of HS containing 10% white galangal extract. As seen in the pictures, both HS have a cloudy appearance. This is caused by the color of the extract used from the red betel
and white galangal leaves that have a dark color, as seen in Figures 1a and 1b. The HS color remains dark after mixing the extracts and materials to make the formulas.

Antibacterial Activity Test

The antimicrobial activities are identified by measuring the inhibition diameter against E. coli and S. aureus. Figure 3a shows no inhibition zone formed by adding 10% red betel HS against E. coli, which means no antibacterial activity is observed. Meanwhile, positive control forms an inhibition zone, and no inhibition zone is formed by negative control. Figure 3b, it can be seen that an inhibition zone formed in 10% red betel HS, which implies that there is antibacterial activity. Chloramphenicol also forms an inhibition zone, while DMSO shows no antibacterial activity, proving that no inhibition zone has been formed.

Tables 3 shows that HS with 10% red betel extract effectively inhibits S. aureus growth. The observed inhibition zone is about 1.08 mm, but no antibacterial activity is observed against E. coli, and no inhibition zone is observed. Unlike the Red betel, the HS with 10% White galangal extract is effective against both S. aureus and E. coli. The inhibition zones resulted in 1.40 mm and 1.47 cm, while the positive control used in this research resulting an inhibition zone of 1.98 mm for E. coli and 2.00 mm for S. aureus.

DISCUSSION

This study found that HS containing 10% white galangal extract effectively inhibits the growth of E. coli and S. aureus bacteria with inhibition diameters of 1.43 mm and 1.40 mm, respectively. The results of the study were in line with the previous research, which stated that white galangal extract was effective for inhibiting bacterial growth and that the administration of 15% Alpinia galanga extract to E. coli bacteria could produce an inhibition of 0.46 mm. Several studies also have shown the activity of white galangal extract as an antibacterial. White galangal causes damage to the inner and outer membranes and causes coagulation of the cytoplasmic. A study found that the essential oil contained in white galangal can inhibit the growth of microbes in food caused by E. coli, S. aureus, and S. typhi. Another research found that hand antiseptic gel containing white galangal extract effectively kills hand germs.

This study also found that HS containing 10% Red betel is effective against S. aureus with a 1.08 mm inhibition zone but resulted in no antibacterial activity against E. coli. A previous study found that using red betel extract and vancomycin therapy could have a four times greater inhibitory effect on the growth of S. aureus. Another study found that the use of irrigation fluid containing 20% red betel extract can effectively reduce the number of bacteria in white...
rat diabetic ulcer isolates. A study found that red betel has an antibacterial effect on gram-positive and gram-negative bacteria such as S. aureus, S. pyogene, and S. typhi.

Red betel can inhibit bacterial growth by inhibiting nucleic acid synthesis, changing cytoplasmic membrane function, inhibiting energy metabolism, reducing cell attachment and biofilm formation, inhibiting porin in cell membranes, and disrupting permeability of cell walls and membranes to cause bacterial cell lysis. However, another study found the opposite, as red betel extract is ineffective against S. aureus and E. coli. Similar to this study, another study found that red betel extract is ineffective for E. coli. It might be caused by different specific defense mechanisms possessed by bacteria to survive in any pressured condition.

Previous studies found that there are differences in the characteristics of the cell wall between gram-positive and gram-negative bacteria. The structure of the cell wall of gram-positive bacteria is simpler, with only a peptidoglycan layer. In contrast, the cell wall of gram-negative bacteria is more complex as it consists of 3 layers: lipopolysaccharide, protein, and peptidoglycan, which can inhibit the infiltration of antibacterial agents into the cell.

According to this research, 10% white galangal extract has more potential as a HS natural ingredient than 10% red betel extract. This result can be caused by the higher level of white galangal flavonoid than red betel's flavonoid level. This study finds that the flavonoid level in white galangal is lower than the level of flavanoid in white galangal (14.12 mmQE/g). Flavonoid is a phytochemical compound that can suppress nucleic acid synthesis, cytoplasmic membrane function, and energy metabolism. Flavonoids have also been found to reduce adhesion and biofilm formation, porin on the cell membrane, membrane permeability, and pathogenicity, so it is a natural compound with high potency as an antibacterial agent.

CONCLUSIONS AND RECOMMENDATION

HS containing 10% white galangal is more effective than HS containing 10% red betel against S. aureus and E. coli. Researching further to produce HS with 10% white galangal with a more attractive appearance (color and smell) is recommended.

REFERENCES
