Potensi Curcumin dan 4 Herbal Empon-Empon Dalam Memodulasi Kekebalan Sel T Terhadap Covid-19

Authors

  • Aryo Tedjo Drug Development Research Cluster, Indonesia Medical Education and Research Institute
  • Dimas Noor Human Cancer Research Center, Indonesia Medical Education and Research Institute
  • Rudi Heryanto Biofarmaka Research Center, IPB, Bogor

DOI:

https://doi.org/10.30595/hmj.v4i3.10209

Keywords:

Covid-19, SARS-CoV-2, sel T, curcumin, empon-empon

Abstract

Longer immunity to Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) infection is thought to occur through memory cellular responses by activity of specific T lymphocytes. However, most patients with Coronavirus disease-19 (Covid-19) experienced a decrease in the number of T lymphocytes or lymphopenia. Agents that help maintain T cell counts such as Curcumin appear to have played an important role during the Covid-19 pandemic. Curcumin is known to provide a balance between T cell effectiveness and T cell autoaggressiveness, as well as restoring memory T cell function as observed in tumor-induced mice. The mixture of 4 herbal extracts of empon-empon which is commonly used as herbal medicine, namely temulawak, ginger, lemongrass, and turmeric, is thought to have the same effect as curcumin. This is known from the tracing of a plant-protein-compound database which shows that there are not many compounds other than curcumin that can modulate T cells. It is necessary to study the role of Curcumin and a mixture of 4 herbal empon-empon in modulating T cells in cases of infection by the SARS-Cov-2 antigen.

Author Biographies

Aryo Tedjo, Drug Development Research Cluster, Indonesia Medical Education and Research Institute

Departemen Kimia Kedokteran, Fakultas Kedokteran Universitas Indonesia.

Dimas Noor, Human Cancer Research Center, Indonesia Medical Education and Research Institute

Faculty of Medicine, Universitas Indonesia

Rudi Heryanto, Biofarmaka Research Center, IPB, Bogor

Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, IPB, Bogor

References

1. Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821): 457–462.

2. Zuo J, Dowell AC, Pearce H, et al. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection [published online ahead of print, 2021 Mar 5]. Nat Immunol. 2021;10.1038/s41590-021-00902-8.

3. Zhao J, Alshukairi AN, Baharoon SA, et al. Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Sci Immunol. 2017;2(14):eaan5393.

4. Birch CJ, et al. Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia. Epidemiol Infect.2005;133(2):273-277.

5. Setyawati V, et al. Deteksi Virus Penyebab Infeksi Saluran Pernafasan Akut di Rumah Sakit (Studi Pendahuluan dengan Uji Fast-Track® Diagnostik). Media Litbangkes. 2018;28(4);257–262

6. Avendaño-Ortiz J, Lozano-Rodríguez R, Martín-Quirós A, et al. Proteins from SARS-CoV-2 reduce T cell proliferation: A mirror image of sepsis. Heliyon. 2020;6(12):e05635.

7. Hammond T, Lee S, Watson MW, et al. Toll-like receptor (TLR) expression on CD4+ and CD8+ T-cells in patients chronically infected with hepatitis C virus. Cell Immunol. 2010;264(2):150-155.

8. Bhattacharyya S, Md Sakib Hossain D, Mohanty S, et al. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol. 2010;7(4):306-315.

9. Yustinianus RR, et al. Curcumin Content in Extract of some Rhizomes from Zingiberaceae Family. JPMS 2019;4(1):15-19

10. Kulip J, Nawan CST, Vairappan CS, and Jaumin B. Ethnobotanical and Phytochemical Studies on Indigenous Zingiber spp. (Zingiberaceae) from Tambunan District, Sabah, Borneo, Malaysia. Nat Prod Chem Res. 2020;8(3):374

11. Kliem C, Merling A, Giaisi M, Köhler R, Krammer PH, Li-Weber M. Curcumin suppresses T cell activation by blocking Ca2+ mobilization and nuclear factor of activated T cells (NFAT) activation. J Biol Chem. 2012;287(13):10200-10209.

12. Chai, J.G., S.A. Xue, D. Coe, C. Addey, I. Bartok, D. Scott, E. Simpson, H.J. Stauss, S. Hori, S. Sakaguchi, J. Dyson. Regulatory T cells, derived from naive CD4+ CD25− T cells by in vitro Foxp3 gene transfer, can induce transplantation tolerance. Transplantation. 2005; 79:1310–1316.

13. Nishimura, E, T. Sakihama, R. Setoguchi, K. Tanaka, S. Sakaguchi. 2004. Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+ CD25+ CD4+ regulatory T cells. Int Immunol. 16: 1189–1201.

14. He, Z., Zhao, C., Dong, Q., Zhuang, H., Song, S., Peng, G., & Dwyer, D. E. (2005). Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 9(6), 323–330.

15. Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H., Yu, H., Zhang, X., Zhang, M., Wu, S., Song, J., Chen, T., Han, M., Li, S., Luo, X., Zhao, J., & Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of clinical investigation, 130(5), 2620–2629.

16.Manson JJ, Crooks C, Naja M, et al. COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study. Lancet Rheumatol. 2020;2(10):e594-e602.

17. Yang M, Chen X, Xu Y. A Retrospective Study of the C-Reactive Protein to Lymphocyte Ratio and Disease Severity in 108 Patients with Early COVID-19 Pneumonia from January to March 2020 in Wuhan, China. Med Sci Monit. 2020;26:e926393.

18. Yoshida T, Ichikawa J, Giuroiu I, et al. C reactive protein impairs adaptive immunity in immune cells of patients with melanoma [published correction appears in J Immunother Cancer. 2020 May;8(1):]. J Immunother Cancer. 2020;8(1):e000234.

19. kbbi.web.id. Empon-empon. Diakses pada 22 Maret 2021, dari https://kbbi.web.id/empon-empon

20. cnnindonesia.com. (2020, 12 Maret). Cegah Corona, Jokowi Suguhi Tamu Minuman Empon-empon. Diakses pada 22 Maret 2021, dari https://www.cnnindonesia.com/nasional/20200312120924-20-482799/cegah-corona-jokowi-suguhi-tamu-minuman-empon-empon

21. Vipada Kantayos, Yingyong Paisooksantivatana, Antioxidant Activity and Selected Chemical Components of 10 Zingiber spp. in Thailand, J. Dev. Sus. Agr. 2012;7(1):89-96,

22. stitch.embl.de/. STITCH. Diakses pada 22 Maret 2021, dari http://stitch.embl.de/cgi/network.pl?taskId=s0I8qzenzaYj

23. Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets. 2011;12(3):332-347.

24. Lee JY, Lee YM, Chang GC, et al. Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: the versatile adjuvant for gefitinib therapy. PLoS One. 2011;6(8):e23756.

25. Yocum GT, Hwang JJ, Mikami M, Danielsson J, Kuforiji AS, Emala CW. Ginger and its bioactive component 6-shogaol mitigate lung inflammation in a murine asthma model. Am J Physiol Lung Cell Mol Physiol. 2020;318(2):L296-L303.

26. Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2-18.

27. Bolger GT, Licollari A, Tan A, et al. Distribution of Curcumin and THC in Peripheral Blood Mononuclear Cells Isolated from Healthy Individuals and Patients with Chronic Lymphocytic Leukemia. Anticancer Res. 2018;38(1):121-130.

28. Milano F, Mari L, van de Luijtgaarden W, Parikh K, Calpe S, Krishnadath KK. Nano-curcumin inhibits proliferation of esophageal adenocarcinoma cells and enhances the T cell mediated immune response. Front Oncol. 2013;3:137

Downloads

Published

2021-08-16