Analysis of Determining the Surge Arrester Protective Distance for Protection on 60 MVA Power Transformers at the 150 KV Main Substation in Surabaya Barat

Reza Sarwo Widagdo, Gatut Budiono, Miftachun Nasichin

Abstract


Because it provides electrical energy to customers that require protection from lightning interference, the substation is a crucial location. An electrical equipment's defense against lightning strikes is provided by a lighting arrestor. The arrester should be placed as near to the transformer as feasible for optimal protection. In order to restrict the installation of arresters to safeguard equipment, the maximum distance for arrester installation must be established. This study only looks at one 60 MVA transformer in the Surabaya Barat Main Substation, and its goal is to determine the minimum amount of error in transformer protection. Based on the maximum possible surge arrester surge arrester jarak with a power transformer at the Surabaya Barat Main Substation, the maximum possible surge arrester distance is 8,135 meters. Based on surge arrester capability, the transformer may be protected from over voltage since the maximum voltage that can occur is just 150.83 kV, with the maximum voltage remaining below the transverse impulse drop of around 650 kV.

Keywords


Surge Arrester; Main Substation; Power Transformator

References


[1] Widagdo, R. S., & Andriawan, A. H. (2023). Analysis of Losses Due to Load Unbalance in a 2000 KVA Transformer at Supermall Mansion 2 Tower Tanglin Surabaya. Journal of Engineering and Scientific Research, 5(2), 78-84.

[2] Widagdo, R. S., & Andriawan, A. H. (2023). Prediction of Age Loss on 160 KVA Transformer PT. PLN ULP Kenjeran Surabaya using The Linear Regression Method. Jurnal Riset Rekayasa Elektro, 5(2), 83-92.

[3] Marlanfar, M., Yusmartato, Y., Yusniati, Y., & Pelawi, Z. (2020). Analisa Penempatan Lightning Arester Pada Gardu Induk Tanjung Morawa. Buletin Utama Teknik, 15(3), 229-233.

[4] Ridal, Y. (2022). Studi Analisis Kemampuan Lightning Arrester Sebagai Proteksi Transformator Daya pada Gardu Induk Padang Luar ULTG Bukit Tinggi. Jurnal Teknik Industri Terintegrasi (JUTIN), 5(2), 270-275.

[5] Manihuruk, J., Simorangkir, T., & Sitanggang, N. L. (2021). Studi Kemampuan Arrester Untuk Pengaman Transformator Pada Gardu Induk Tanjung Morawa 150 KV. Jurnal ELPOTECS, 4(1), 16-25.

[6] Asna, I. M., Suriana, I. W., Sugarayasa, I. W., Sutama, W., Pancane, I. W. D., Adrama, I. N. G., & Sariana, I. M. (2021). Analisis Konstruksi Posisi Lightning Arrester Di Gardu Distribusi Km 0003 Penyulang Subagan Wilayah Kerja PT PLN (Persero) ULP Karangasem. Jurnal Ilmiah Telsinas Elektro, Sipil dan Teknik Informasi, 4(1), 46-55.

[7] Azis, A., & Alimin Nurdin, H.). Analisa Jarak Lindung Lighting Arrester Terhadap Transformator Daya 20 Mva Gardu Induk Sungai Juaro Palembang. TEKNIKA: Jurnal Teknik, 7(1), 106-120.

[8] Zainuddin, M., & Bima, L. (2023). Jarak Penempatan Lightning Arrester sebagai Pelindung Transformator terhadap Tegangan Lebih pada Gardu Induk 150 KV Harapan Baru. Mutiara: Jurnal Ilmiah Multidisiplin Indonesia, 1(2), 164-185.

[9] Wirawan, H. Y., Al-Amin, M. S., & Emidiana, E. (2021). Kemampuan Arrester Sebagai Pengaman Transformator. Jurnal Tekno, 18(1), 72-78.

[10] Rao, M. M., Lanjewar, A., & Tiwari, N. (2022). Analytical and experimental studies on 245 KV gas insulated surge arrester. Electric Power Systems Research, 204, 107713.

[11] Shariatinasab, R., & Azimi, R. (2020). A methodology for optimal design of transmission lines to protection against lightning surges in presence of arresters. Advanced Electromagnetics, 9(1), 105-110.

[12] Boumous, S., Boumous, Z., Latréche, S., & Nouri, H. (2023). Influence of the lightning arrester position on protection of the 220KV Overhead transmission line. Przeglad Elektrotechniczny, 99(5).

[13] Castro, W. S., Lopes, I. J., Missé, S. L., & Vasconcelos, J. A. (2022). Optimal placement of surge arresters for transmission lines lightning performance improvement. Electric Power Systems Research, 202, 107583.

[14] Datsios, Z. G., Mikropoulos, P. N., Tsovilis, T. E., Thalassinakis, E., & Pagonis, G. (2022). Investigation of line surge arresters application to the 150 KV system of Rhodes. Electric Power Systems Research, 213, 108763.

[15] Olesz, M., Litzbarski, L. S., & Redlarski, G. (2023). Leakage Current Measurements of Surge Arresters. Energies, 16(18), 6480.

[16] Visacro, S., Silveira, F. H., Pereira, B., & Gomes, R. M. (2020). Constraints on the use of surge arresters for improving the backflashover rate of transmission lines. Electric Power Systems Research, 180, 106064.

[17] Handoko, S. R. (2023). Analisa Peralatan Lightning Arrester Pada Gardu Induk 150 KV PLTU Rembang. JETI (Jurnal Elektro dan Teknologi Informasi), 2(1), 17-21.

[18] Munir, A., Abdul-Malek, Z., & Arshad, R. N. (2021, July). Resistive leakage current based condition assessment of zinc oxide surge arrester: a review. In 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM) (pp. 183-186). IEEE.

[19] Castro, W. S., Lopes, I. J., Missé, S. L., & Vasconcelos, J. A. (2022). Optimal placement of surge arresters for transmission lines lightning performance improvement. Electric Power Systems Research, 202, 107583.

[20] Cao, J., Du, Y., Ding, Y., Lyu, J., Qi, R., Chen, M., & Andreotti, A. (2023). Lightning protection with a differentiated arrester configuration for distribution networks using a multi-objective optimization procedure. IEEE Transactions on Power Delivery, 38(3), 2149-2159.

[21] Khodsuz, M. (2022). Externally gapped line arrester performance in high voltage transmission line using frequency grounding system: Absorbed energy and expected life assessment. IET Science, Measurement & Technology, 16(7), 426-440.

[22] Ranjbar, B., Darvishi, A., Dashti, R., & Shaker, H. R. (2022). A survey of diagnostic and condition monitoring of metal oxide surge arrester in the power distribution network. Energies, 15(21), 8091.

[23] Sabiha, N. A., Mahmood, F., & Abd-Elhady, A. M. (2020). Failure risk assessment of surge arrester using paralleled spark gap. IEEE Access, 8, 217098-217107.

[24] Doorsamy, W., & Bokoro, P. (2018, September). Condition monitoring of metal-oxide surge arresters using leakage current signal analysis. In 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE) (pp. 1-4). IEEE.

[25] Dobric, G., Stojkovic, Z., & Stojanovic, Z. (2020). Experimental verification of monitoring techniques for metal‐oxide surge arrester. IET Generation, Transmission & Distribution, 14(6), 1021-1030.

[26] Shu, S., Zhang, X., Wang, G., Zeng, J., & Ruan, Y. (2023). A Fault Identification Method for Metal Oxide Arresters Combining Suppression of Environmental Temperature and Humidity Interference with a Stacked Autoencoder. Energies, 16(24), 8033.

[27] Fu, Y., Li, T., Li, Y., Hu, X., Jiang, X., Dong, Y., ... & Wang, J. (2023). Research on Field Source Characteristics of Leakage Current of Arrester Based on TMR Sensor. Sensors, 23(8), 3830.

[28] Khodsuz, M., Teymourian, M. H., & Seyyedbarzegar, S. (2024). New criteria for metal oxide surge arrester condition monitoring based on leakage current analysis: Considering non‐uniform pollution effect. IET Generation, Transmission & Distribution.

[29] Shi, W., Yuan, H., Li, J., Zhang, P., & Zhou, C. (2020, June). Analysis on the natural pollution characteristics of metal-oxide surge arrester with different external insulation material. In 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE) (pp. 2237-2241). IEEE.

[30] Papliński, P., Wańkowicz, J., Śmietanka, H., Ranachowski, P., Ranachowski, Z., Kudela, S. J., & Aleksiejuk, M. (2020). Comparative studies on degradation of varistors subjected to operation in surge arresters and surge arrester counters. Archives of Metallurgy and Materials, 65(1), 367-374.


Full Text: PDF

DOI: 10.30595/jrre.v6i1.21555

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2685-5313