Penerapan Metode Single Linkage dengan Manhattan Distance Similarity dalam Mengelompokkan Trens Topik Kerja Praktik
DOI:
https://doi.org/10.30595/jrst.v5i1.9083Keywords:
judul kerja praktik, text mining, Manhattan Distance SimilarityAbstract
Data laporan judul kerja praktik (KP) biasanya hanya terkumpul di perpustakaan dan jarang dipubilkasikan ke mahasiswa, hal ini menyebabkan kesulitan bagi mahasiswa yang akan mengkasesnya. Berdasarkan permasalahan tersebut, maka dibuatlah suatu program pada penlitian ini untuk pengelompokkan Trend Topik. Metode yang digunakan dalam penelitian ini adalah Manhattan Distance Similariy dan Single Linkage. Sebelum masuk tahapan text mining, perlu dilakukan perancangan diantaranya perancangan basis data dan antar muka (interface). Tahapan dan text mining adalah mengumpulkan data (collect data), penguraian teks (text mining), penyaringan teks (text filtering), pembobotan kata (calculate term count), similarity, pengelompokan, dan pengujian. Hasil dari penelitian ini adalah program yang dapat mengolah data judul KP menjadi pola kelompok Trend Topik KP. Dari 905 data yang di dapatkan, terbentuk 7 kelompok yaitu Sistem Informasi, Multimedia, Jaringan, Web, Kewirausahaan, Magang, dan Pelatihan. Tetapi dari hasil pengujian Purity Test didapatkan nilai sebesar 0,267, yang artinya Manhattan Distance Similarity dan Single Linkage kurang cocok untuk mengelompokkan Judul KP.
References
Chakraborty, G., Pagolu, M. and Garla, S. (2013) PREVIEW: Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS, Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS.
Handoyo, R. et al. (2014) “Perbandingan Metode Clustering Mengggunakan metode Single Linkage dan K-Means Pada Pengelompokkan Dokumen,” JSM STMIK Mikroskil, 15(2), pp. 73–82.
Janani, R. and Vijayarani, S. (2016) “Text Mining Research : A Survey,” International Journal of innovative Research in Computer and Communication Engineering, 4(4), pp. 6564–6571. doi: 10.15680/IJIRCCE.2016.
Kao, A. and Poteet, S. R. (2006) Natural Language Processing and Text Mining. USA: Springer.
Muzzammil, R. R., Ginardi, R. V. hari and Purwitasari, D. (2016) “Modul Klasifikasi Aduan dengan Pendekatan Kemiripan Teks pada Aplikasi Perangkat Bergerak Suara Warga (Surga) Kota Kediri,” Jurnal Teknik ITS, 5(1), pp. 52–57.
Zahrotun, L. (2016) “Comparison Jaccard Similarity , Cosine Similarity and Combined Both of the Data Clustering With Shared Nearest Neighbor Method,” Computer Engineering and Applications, 5(1), pp. 11–18.
Zahrotun, L. (2017) “Text Mining for Internship Titles Clustering Using Shared Nearest-Neighbor Method,” Computer Engineering and Applications, 6(3).
Zahrotun, L. and Mushlihudin (2017) “Rancang Bangun Aplikasi Text Mining dalam Mengelompokkan Judul Penelitian Dosen Menggunakan Metode Shared Nearest Neighbor dan Euclidean Similarity,” Jurnal Ilmu Teknik elektro Komputer dan informatika (JITEKI), 3(2), pp. 91–99.
Zahrotun, L., Putri, N. hutami and Khusna, A. N. (2018) “The Implementation of K-Means Clustering Method in Classifying Undergraduate Thesisi Titles,” in 12th International Conference on Telecommunication Systems, Services, and Applications (TSSA). Yogyakarta: IEEE.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tsani Elvia Nita, Lisna Zahrotun

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)
JRST (Jurnal Riset Sains dan Teknologi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.