Model Structure of Fetal Health Status Prediction
DOI:
https://doi.org/10.30595/juita.v10i2.12179Keywords:
fetal prediction, pre-process model, prediction model, prediction output, supervised learningAbstract
One of the issues of pregnant mothers in Indonesia is their access speed and accuracy services availability towards the prediction of fetus or baby conceived during pregnancy. Thus, the research aimed to obtain the ability to predict three ranges of a fetal target, namely normal, risk, and abnormal condition. This research emphasized the modeling aspect of supervised learning using seven different algorithms to obtain an optimal working score. Those are Decision Tree, Gradient Boosting, Random Forest, SVM, k-NN, AdaBoost, and Stochastic Gradient Descent (SGD). The structure process is mainly divided into two steps, pre-process model and the prediction model. An early data pre-process is needed before executing. Prediction output indicated that dataset test is valid, and can be proven by comparing between the testing data table and prediction and testing table diagram. The resulting model has described the sequence for simulating the training and testing data model to produce the highest working score from the seven selected algorithms. The simulated data based on the model created is proved its validity thru three main filter processes, which are missing data solution, outlier data control, and data normalization. The result obtained a working score that has data proximity with a low score range of 0.063 from model evaluation, confusion matrix, and prediction output.References
[1] Z. Zeng, F. Liu, and S. Li, “Metabolic adaptations in pregnancy: A review,” Ann. Nutr. Metab., vol. 70, no. 1, pp. 59–65, 2017, doi: 10.1159/000459633.
[2] World Health Organization, "E-health Country Profiles", www.who.int, 2016. [Online]. Available: http://www.who.int/goe/publications/atlas/2015/tur.pdf?ua=1. [Accessed: 10- Jun- 2021].
[3] International Telecommunication Union, "ICT Development Index Rank", Itu.int, 2016. [Online]. Available: http://www.itu.int/net4/ITU-D/idi/2016/. [Accessed: 10- Jun- 2018].
[4] Y. Pappas, J. Vseteckova, N. Mastellos, G. Greenfield, and G. Randhawa, “Diagnosis and decision-making in telemedicine,” J. Patient Exp., vol. 6, no. 4, pp. 296–304, 2019, doi: 10.1177/2374373518803617.
[5] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015, doi: 10.1126/science.aaa8415.
[6] A. R. Yarlapati, S. Roy Dey, and S. Saha, “Early prediction of LBW cases via minimum error rate classifier: A statistical machine learning approach,” in 2017 IEEE International Conference on Smart Computing (SMARTCOMP), 2017, pp. 1–6, doi: 10.1109/SMARTCOMP.2017.7947002.
[7] H. Zhu and Z. Wang, “Feature matching in Ultrasound images,” arXiv [cs.CV], 2020, doi: 10.48550/ARXIV.2010.12216.
[8] A. Birukov, F. Herse, J. H. Nielsen, H. B. Kyhl, M. Golic, K. Kräker, N. Haase, A. Busjahn, S. Bruun, B. L. Jensen, D. N. Müller, T. K. Jensen, H.T. Christesen, M. S. Andersen, J. S. Jørgensen, R. Dechend and L. B. Anderse, “Blood pressure and angiogenic markers in pregnancy: Contributors to pregnancy-induced hypertension and offspring cardiovascular risk,” Hypertension, vol. 76, no. 3, pp. 901–909, 2020, doi: 10.1161/HYPERTENSIONAHA.119.13966.
[9] L. K. Woolery and J. Grzymala-Busse, “Machine learning for an expert system to predict preterm birth risk,” J. Am. Med. Inform. Assoc., vol. 1, no. 6, pp. 439–446, 1994, doi: 10.1136/jamia.1994.95153433.
[10] Subasi, B. Kadasa, and E. Kremic, “Classification of the cardiotocogram data for anticipation of fetal risks using bagging ensemble classifier,” Procedia Comput. Sci., vol. 168, pp. 34–39, 2020, doi: 10.1016/j.procs.2020.02.248.
[11] S. Ansari and M. B. Ansari, “Smart health monitoring system for pregnant women,” Int. J. Eng. Adv. Technol., vol. 9, no. 4, pp. 923–926, 2020, doi: 10.35940/ijeat.D7114.049420.
[12] Lakshmi B.N., Indumathi T.S., and N. Ravi, “A comparative study of classification algorithms for risk prediction in pregnancy,” in TENCON 2015 - 2015 IEEE Region 10 Conference, 2015, pp. 1–6, doi: 10.1109/TENCON.2015.7373161.
[13] B. N. Lakshmi, T. S. Indumathi, and N. Ravi, “An hybrid approach for prediction based health monitoring in pregnant women,” Procedia technol., vol. 24, pp. 1635–1642, 2016, doi: 10.1016/j.protcy.2016.05.171.
[14] L. C. Kenny, W. B. Dunn, D. I. Ellis, J. Myers, P. N. Baker, D. B. Kell, and GOPEC Consortium, “Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning,” Metabolomics, vol. 1, no. 3, pp. 227–234, 2005, doi: 10.1007/s11306-005-0003-1.
[15] C. D. Smyser, N. U. Dosenbach, T. A. Smyser, A. Z. Snyder, C. E. Rogers, T. E. Inder, B. L. Schlaggar, and J. J. Neil, “Prediction of brain maturity in infants using machine-learning algorithms,” Neuroimage, vol. 136, pp. 1–9, 2016, doi: 10.1016/j.neuroimage.2016.05.029.
[16] F. Liu, C. Rouault, K. Clément, W. Zhu, S. A. Degrelle, M. A. Charles, B. Heude, and T. Fournier, “C1431T variant of PPARγ is associated with preeclampsia in pregnant women,” Life (Basel), vol. 11, no. 10, p. 1052, 2021, doi: 10.3390/life11101052.
[17] G. Ball, P. Aljabar, T. Arichi, N. Tusor, D. Cox, N. Merchant, P. Nongena, J.V. Hajnal, A.D. Edwards, and S.J. Counsell, “Machine-learning to characterise neonatal functional connectivity in the preterm brain,” Neuroimage, vol. 124, no. Pt A, pp. 267–275, 2016, doi: 10.1016/j.neuroimage.2015.08.055.
[18] N. Krupa, M. Ali, E. Zahedi, S. Ahmed, and F. M. Hassan, “Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine,” Biomed. Eng. Online, vol. 10, no. 1, p. 6, 2011, doi: 10.1186/1475-925X-10-6.
[19] E. Alshdaifat, D. Alshdaifat, A. Alsarhan, F. Hussein, and S. M. F. S. El-Salhi, “The effect of preprocessing techniques, applied to numeric features, on classification algorithms’ performance,” Data (Basel), vol. 6, no. 2, p. 11, 2021, doi: 10.3390/data6020011.
[20] W. K. Tan and P. J. Heagerty, “Surrogate-guided sampling designs for classification of rare outcomes from electronic medical records data,” Biostatistics, vol. 23, no. 2, pp. 345–361, 2022, doi:10.1093/biostatistics/kxaa028.
Downloads
Published
How to Cite
Issue
Section
License

JUITA: Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.