Facial Images Improvement in the LBPH Algorithm Using the Histogram Equalization Method
DOI:
https://doi.org/10.30595/juita.v10i2.13223Keywords:
LBPH, Histogram EqualizationAbstract
In face recognition research, detecting several parts of the face becomes a necessary part of the study. The main factor in this work is lighting; some obstacles emerge when the low light's intensity falls in the process of face detection because of some conditions, such as weather, season, and sunlight. This study focuses on detecting faces in dim lighting using the Local Binary Pattern Histogram (LBPH) algorithm assisted by the Classifier Method, which is often used in face detection, namely the Haar Cascade Classifier. Furthermore, It will employ the image enhancement method, namely Histogram Equalization (HE), to improve the image source from the webcam. In the evaluation, different light intensities and various head poses affect the accuracy of the method. As a result, The research reaches 88% accuracy for successful face detection. Some factors such as head accessories, hair covering the face, and several parts of the face, like the eye, mouth, and nose that are invisible, should not be extreme.References
[1] M. K. Rusia, D. K. Singh, and M. A. Ansari, ‘Human Face Identification using LBP and Haar-like Features for Real Time Attendance Monitoring’, Proc. IEEE Int. Conf. Image Inf. Process., vol. 2019-Novem, pp. 612–616, 2019, doi: 10.1109/ICIIP47207.2019.8985867.
[2] S. O. Adeshina, H. Ibrahim, S. S. Teoh, and S. C. Hoo, ‘Custom face classification model for classroom using haar-like and lbp features with their performance comparisons’, Electron., vol. 10, no. 2, pp. 1–15, 2021, doi: 10.3390/electronics10020102.
[3] D. B. K. Kishore, K. N. Kaushik, G. L. P. Harish, and E. M. D. Ravi, ‘Computer vision based classroom attendance management system ‑ with speech output using LBPH algorithm’, Int. J. Speech Technol., no. 0123456789, pp. 2–10, 2020, doi: 10.1007/s10772-020-09739-2.
[4] S. Bussa, ‘Smart Attendance System using OPENCV based on Facial Recognition’, vol. 9, no. 03, pp. 54–59, 2020.
[5] A. Anand, V. Jha, and L. Sharma, ‘An Improved Local Binary Patterns Histograms Technique for Face Recognition for Real Time Applications’, in International Journal of Recent Technology and Engineering (IJRTE), 2019, no. 2, pp. 524–529, doi: 10.35940/ijrte.B1098.0782S719.
[6] A. M. Jagtap, V. Kangale, K. Unune, and P. Gosavi, ‘A study of LBPH, eigenface, fisherface and haar-like features for face recognition using OpenCV’, Proc. Int. Conf. Intell. Sustain. Syst. ICISS 2019, pp. 219–224, 2019, doi: 10.1109/ISS1.2019.8907965.
[7] M. R. Dhobale, R. Y. Biradar, R. R. Pawar, and S. A. Awatade, ‘Smart Home Security System using Iot , Face Recognition and Raspberry Pi’, in International Journal of Computer Applications, 2020, no. April, pp. 45–47, doi: 10.5120/ijca2020920105.
[8] M. Veluchamy and B. Subramani, ‘Image contrast and color enhancement using adaptive gamma correction and histogram equalization’, Optik (Stuttg)., vol. 183, pp. 329–337, Apr. 2019, doi: 10.1016/j.ijleo.2019.02.054.
[9] N. Kamarudin et al., ‘Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using raspberry Pi’, Univers. J. Electr. Electron. Eng., vol. 6, no. 5, pp. 67–75, 2019, doi: 10.13189/ujeee.2019.061609.
[10] S. Malhotra, V. Aggarwal, H. Mangal, P. Nagrath, and R. Jain, ‘Comparison between attendance system implemented through haar cascade classifier and face recognition library’, in IOP Conference Series: Materials Science and Engineering, 2021, vol. 1022, no. 1, doi: 10.1088/1757-899X/1022/1/012045.
[11] R. R. Isnanto, A. F. Rochim, D. Eridani, and G. D. Cahyono, ‘Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images’, in International Journal of Engineering and Technology Innovation, 2021, vol. 11, no. 1, pp. 45–58.
[12] C. Singh, E. Walia, and K. P. Kaur, ‘Color texture description with novel local binary patterns for effective image retrieval’, Pattern Recognit., vol. 76, pp. 50–68, Apr. 2018, doi: 10.1016/j.patcog.2017.10.021.
[13] H. Yin, Y. Chen, J. Xiong, R. Xia, J. Xie, and K. Yang, ‘An improved local binary pattern method for pollen image classification and recognition’, Comput. Electr. Eng., vol. 90, p. 106983, Mar. 2021, doi: 10.1016/j.compeleceng.2021.106983.
[14] F. Deeba and A. Ahmed, ‘LBPH-based Enhanced Real-Time Face Recognition’, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. October, pp. 274–280, 2019, doi: 10.14569/IJACSA.2019.0100535.
[15] P. Muyambo, ‘An Investigation on the Use of LBPH Algorithm for Face Recognition to Find Missing People in’, Int. J. Eng. Res. Technol., vol. 7, no. 07, pp. 80–86, 2018.
[16] V. Voronin, S. Tokareva, E. Semenishchev, and S. Agaian, ‘Thermal image enhancement algorithm using local and global logarithmic transform histogram matching with spatial equalization’, Proc. IEEE Southwest Symp. Image Anal. Interpret., vol. 2018-April, pp. 5–8, 2018, doi: 10.1109/SSIAI.2018.8470344.
[17] M. F. Khan, D. Goyal, M. M. Nofal, E. Khan, R. Al-hmouz, and E. Herrera-viedma, ‘Fuzzy-Based Histogram Partitioning for Bi-Histogram Equalisation of Low Contrast Images’, IEEE Access, vol. 8, pp. 11595–11614, 2020.
[18] Z. Huang, Z. Wang, J. Zhang, Q. Li, and Y. Shi, ‘Image enhancement with the preservation of brightness and structures by employing contrast limited dynamic quadri-histogram equalization’, Optik (Stuttg)., vol. 226, p. 165877, Jan. 2021, doi: 10.1016/j.ijleo.2020.165877.
[19] Z. Bai, K. Yang, L. Xie, J. L. Lee, and X. Gao, ‘A histogram equalization algorithm based on building a grey level binary tree dynamically’, Optik (Stuttg)., vol. 224, p. 165695, Dec. 2020, doi: 10.1016/j.ijleo.2020.165695.
[20] S. Yelmanov, O. Hranovska, and Y. Romanyshyn, ‘A New Approach to the Implementation of Histogram Equalization in Image Processing’, 2019 3rd Int. Conf. Adv. Inf. Commun. Technol. AICT 2019 - Proc., no. 1, pp. 288–293, 2019, doi: 10.1109/AIACT.2019.8847920.
[21] W. Wang, X. Wu, X. Yuan, and Z. Gao, ‘An Experiment-Based Review of Low-Light Image Enhancement Methods’, IEEE Access, vol. 8, pp. 87884–87917, 2020, doi: 10.1109/ACCESS.2020.2992749.
[22] U. K. Acharya and S. Kumar, ‘Genetic algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement’, Optik (Stuttg)., vol. 230, p. 166273, Mar. 2021, doi: 10.1016/j.ijleo.2021.166273.
[23] B. S. Rao, ‘Dynamic Histogram Equalization for contrast enhancement for digital images’, Appl. Soft Comput. J., vol. 89, p. 106114, Apr. 2020, doi: 10.1016/j.asoc.2020.106114.
[24] Fahim_02, ‘Face mask dataset_project part II’, Kaggle, 2021. https://www.kaggle.com/fahim02/face-mask-dataset-project-part-ii.
[25] H. Tanaka and A. Taguchi, ‘Brightness preserving generalized histogram equalization’, IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2020-Novem, pp. 1397–1400, 2020, doi: 10.1109/TENCON50793.2020.9293837.
Downloads
Published
How to Cite
Issue
Section
License

JUITA: Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.