Pattern Detection of Economic and Pandemic Vulnerability Index in Indonesia Using Bi-Cluster Analysis
DOI:
https://doi.org/10.30595/juita.v10i2.14940Keywords:
Bi-clustering, iterative signature algorithm, Liu and Wang index, mean square residue, pattern detectionAbstract
Bi-clustering is a clustering development that aims to group data simultaneously from two directions. The Iterative Signature Algorithm (ISA) is one of the bi-clustering algorithms that work iteratively to find the most correlated bi-cluster. Detecting economic and pandemic vulnerability using bi-cluster analysis is essential to get spatial patterns and an overview of Indonesia's economic and pandemic vulnerability characteristics. Bi-clustering using ISA requires setting the row and column threshold to form seventy combinations of thresholds. The best is chosen based on the average value of mean square residue to volume ratios. In addition, the similarity of the best bi-cluster with the other is also seen based on the Liu and Wang index values. The -1.0 row and -1.0 column threshold combinations were selected and produced the best bi-cluster with the smallest average value of mean square residue to volume ratios (0.00141). Based on Liu and Wang index values, it has more than 95% similarity with the combination of -1.0 row and -0.9 column thresholds and the -0.9 row and -1.0 column thresholds. These selected threshold combinations produce three bi-clusters with five types of spatial patterns and different characteristics because of the overlap between these three bi-clusters.
References
[1] J. A. Hartigan, “Direct clustering of a data matrix,” J. Am. Stat. Assoc., vol. 67, no. 337, pp. 123–129, 1972, doi: 10.1080/01621459.1972.10481214.
[2] Y. Cheng and G. M. Church, “Biclustering of expression data.,” Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 8, pp. 93–103, 2000.
[3] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, Spectral biclustering of microarray data: Coclustering genes and conditions, vol. 13, no. 4. 2003. doi: 10.1101/gr.648603.
[4] BPS, “Pertumbuhan Ekonomi Indonesia Triwulan IV-2020,” BRS, vol. No. 13/02, p. 12, 2021, [Online]. Available: https://ipb.link/ekonomi-2020
[5] BPS, “Profi Kemiskinan di Indonesia September 2020,” BRS, vol. No. 16/02, p. 12, 2021, [Online]. Available: https://ipb.link/kemiskinan-sept-2020
[6] R. Austen, “Statistik Covid-19 per Provinsi,” 2021, [Online]. Available: https://ipb.link/datastudio-covid19
[7] United Nations, “EVI Indicators,” 2011. ipb.link/un-evi (accessed Apr. 27, 2021).
[8] National Institute of Environmental Health Sciences, “Details for PVI Maps,” 2020. ipb.link/niehs (accessed Apr. 27, 2021).
[9] B. Pontes, R. Giráldez, and J. S. Aguilar-Ruiz, “Biclustering on expression data: A review,” J. Biomed. Inform., vol. 57, pp. 163–180, 2015, doi: 10.1016/j.jbi.2015.06.028.
[10] S. Bergmann, J. Ihmels, and N. Barkai, “Iterative signature algorithm for the analysis of large-scale gene expression data,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., vol. 67, no. 3, p. 18, 2003, doi: 10.1103/PhysRevE.67.031902.
[11] H. Zhao, A. Wee-Chung Liew, D. Z. Wang, and H. Yan, “Biclustering Analysis for Pattern Discovery: Current Techniques, Comparative Studies and Applications,” Curr. Bioinform., vol. 7, no. 1, pp. 43–55, 2012, doi: 10.2174/157489312799304413.
[12] S. Kaiser, “Biclustering: Methods, Software and Application,” Ph.D Thesis, p. 178, 2011.
[13] Nurmawiya and R. Kurniawan, “Pengelompokan Wilayah Indonesia Dalam Menghadapi Revolusi Industri 4.0 Dengan Metode Biclustering,” pp. 790–797, 2020.
[14] A. L. Richards, P. Holmans, M. C. O’Donovan, M. J. Owen, and L. Jones, “A comparison of four clustering methods for brain expression microarray data,” BMC Bioinformatics, vol. 9, pp. 1–17, 2008, doi: 10.1186/1471-2105-9-490.
[15] N. Kavitha Sri and R. Porkodi, “An extensive survey on biclustering approaches and algorithms for gene expression data,” Int. J. Sci. Technol. Res., vol. 8, no. 9, pp. 2228–2236, 2019.
[16] H. Cho and I. S. Dhillon, “Coclustering of human cancer microarrays using minimum sum-squared residue coclustering,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 5, no. 3, pp. 385–400, 2008, doi: 10.1109/TCBB.2007.70268.
[17] A. Chakraborty and H. Maka, “Biclustering of gene expression data using genetic algorithm,” Proc. 2005 IEEE Symp. Comput. Intell. Bioinforma. Comput. Biol. CIBCB ’05, vol. 2005, no. 2000, 2005, doi: 10.1109/cibcb.2005.1594893.
[18] C. A. Putri, R. Irfani, and B. Sartono, “Recognizing poverty pattern in Central Java using Biclustering Analysis,” J. Phys. Conf. Ser., vol. 1863, no. 1, 2021, doi: 10.1088/1742-6596/1863/1/012068.
[19] X. Liu and L. Wang, “Computing the maximum similarity bi-clusters of gene expression data,” Bioinformatics, vol. 23, no. 1, pp. 50–56, 2007, doi: 10.1093/bioinformatics/btl560.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License

JUITA: Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.