Prediction of O3 Concentration Level Using Fuzzy Non-Stationary Method
DOI:
https://doi.org/10.30595/juita.v10i2.15117Keywords:
Fuzzy logic, fuzzy non-stationary, interpretation implication fuzzy, air concentration prediction, air pollutionAbstract
The composition of air concentration is not constant. It constantly changes with minor changes at any time, so more than one measurement is needed to represent the air concentration level for a full day. The fuzzy non-stationary method can overcome uncertainty in an environment that is not constant or caused by minor temporal changes based on time variables. This study uses a non-stationary fuzzy method to determine the level of O3 concentration based on the input variables of temperature, humidity, and wind speed. The tests were conducted in September, October, and November using four types of implication process interpretation, namely interpretation 1 (classical logic), interpretation 2 (classical logic), interpretation 3 (algebraic), and interpretation 3 (standard). The test results in September showed a tendency for error percentage using the MAPE amount of 19, October's amount of 25, and November's amount of 18.References
[1] S. Fardiaz, Polusi Air & Udara. Yogyakarta: Penerbit PT Kanisius, 1992.
[2] DLH, Laporan Analisa Hasil Pemantauan Kualitas Udara Kota Yogyakarta Tahun 2021. 2021.
[3] K. Ezimand and A. A. Kakroodi, “Prediction and spatio – Temporal analysis of ozone concentration in a metropolitan area,” Ecol. Indic., vol. 103, no. April, pp. 589–598, 2019, doi: 10.1016/j.ecolind.2019.04.059.
[4] M. Ando, V. Biju, and Y. Shigeri, “Development of technologies for sensing ozone in ambient air,” Anal. Sci., vol. 34, no. 3, pp. 263–271, 2018, doi: 10.2116/analsci.34.263.
[5] M. Ebrahimi and F. Qaderi, “Determination of the most effective control methods of SO2 Pollution in Tehran based on adaptive neuro-fuzzy inference system,” Chemosphere, vol. 263, p. 128002, Jan. 2021, doi: 10.1016/j.chemosphere.2020.128002.
[6] N. Ritha and R. Wardoyo, “Implementasi Neural Fuzzy Inference System dan Algoritma Pelatihan Levenberg-Marquardt untuk Prediksi Curah Hujan,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 10, no. 2, p. 125, 2016, doi: 10.22146/ijccs.15532.
[7] S. Lestari and M. R. Romahdoni, “Decision Support System for Service Quality Using SMART and Fuzzy ServQual Methods,” JUITA J. Inform., vol. 9, no. 1, p. 83, 2021, doi: 10.30595/juita.v9i1.9644.
[8] M. T. Utomo and H. Mustafidah, “Penentuan Spesifikasi Komputer Berdasarkan Kebutuhan Pemakai Dan Harga Menggunakan Basis Data Fuzzy,” Juita, vol. 1, pp. 28–36, 2016.
[9] R. Riyaz and P. V. Pushpa, “Air Quality Prediction in Smart Cities: A Fuzzy-logic based Approach,” Proc. Int. Conf. Comput. Tech. Electron. Mech. Syst. CTEMS 2018, pp. 172–178, 2018, doi: 10.1109/CTEMS.2018.8769195.
[10] A. T. Teologo, E. P. Dadios, R. Q. Neyra, and I. M. Javel, “Air Quality Index (AQI) Classification using CO and NO2 Pollutants: A Fuzzy-based Approach,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2018-Octob, no. 2, pp. 194–198, 2019, doi: 10.1109/TENCON.2018.8650344.
[11] A. Dass, S. Srivastava, and G. Chaudhary, “Air pollution: A review and analysis using fuzzy techniques in Indian scenario,” Environ. Technol. Innov., vol. 22, p. 101441, 2021, doi: 10.1016/j.eti.2021.101441.
[12] J. M. Garibaldi, M. Jaroszewski, and S. Musikasuwan, “Nonstationary Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 1072–1086, Aug. 2008, doi: 10.1109/TFUZZ.2008.917308.
[13] S. Musikasuwan, “Novel Fuzzy Techniques for Modelling Human Decision Making,” University of Nottingham, 2013.
[14] J. M. Garibaldi, S.-M. Zhou, X.-Y. Wang, R. I. John, and I. O. Ellis, “Incorporation of expert variability into breast cancer treatment recommendation in designing clinical protocol guided fuzzy rule system models,” J. Biomed. Inform., vol. 45, no. 3, pp. 447–459, Jun. 2012, doi: 10.1016/j.jbi.2011.12.007.
[15] V. D. V. Latumeten, “DIAGNOSA STATUS RESIKO JANTUNG KORONER MENGGUNAKAN METODE FUZZY NON STATIONARY,” BAREKENG J. Ilmu Mat. dan Terap., vol. 11, no. 1, pp. 27–38, Mar. 2017, doi: 10.30598/barekengvol11iss1pp27-38.
[16] S. Coupland and S. G. Matthews, “Using nonstationary fuzzy sets to improve the tractability of fuzzy association rules,” in 2013 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), Apr. 2013, pp. 9–14, doi: 10.1109/T2FZZ.2013.6613293.
[17] O. S. Sitompul, Z. Situmorang, F. R. Naibaho, and E. B. Nababan, “Steganography with Highly Random Linear Congruential Generator for Security Enhancement,” in 2018 Third International Conference on Informatics and Computing (ICIC), Oct. 2018, pp. 1–6, doi: 10.1109/IAC.2018.8780445.
[18] H. E. Putra and K. Harianto, “Implementasi Linear Congruential Generator untuk Pengacakan Gambar Pada Permainan Puzzle,” SATIN - Sains dan Teknol. Inf., vol. 4, no. 1, pp. 89–96, Jun. 2018, doi: 10.33372/stn.v4i1.302.
[19] S. Musikasuwan and J. Garibaldi, “Exploring gaussian and triangular primary membership functions in non-stationary fuzzy sets,” Proc. Inf. Process. …, 2006, [Online]. Available: http://www.math.s.chiba-u.ac.jp/~yasuda/open2all/Paris06/IPMU2006/HTML/FINALPAPERS/P388.PDF.
[20] R. Wardoyo and W. D. Yuniarti, “Analysis of Fuzzy Logic Modification for Student Assessment in e-Learning,” IJID (International J. Informatics Dev., vol. 9, no. 1, p. 29, Sep. 2020, doi: 10.14421/ijid.2020.09105.
[21] N. Hasanah and R. Wardoyo, “Purwarupa Sistem Pakar dengan Mamdani Product untuk Menentukan Menu Harian Penderita DM,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 7, no. 1, p. 45, 2013, doi: 10.22146/ijccs.3051.
[22] I. Yulian, D. S. Anggraeni, and Q. Aini, “Penerapan Metode Trend Moment Dalam Forecasting Penjualan Produk CV. Rabbani Asyisa,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 6, no. 2, pp. 193–200, 2020.
Downloads
Published
How to Cite
Issue
Section
License

JUITA: Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.