Number of Cyber Attacks Predicted With Deep Learning Based LSTM Model
Abstract
Keywords
References
[1] J. K. Jain and A. A. Waoo, “An Artificial Neural Network Technique for Prediction of Cyber-Attack using Intrusion Detection System,” Journal of Artificial Intelligence, Machine Learning and Neural Network, no. 32, pp. 33–42, Feb. 2023, doi: 10.55529/jaimlnn.32.33.42.
[2] S. Jacob, Y. Qiao, Y. Ye, and B. Lee, “Anomalous distributed traffic: Detecting cyber security attacks amongst microservices using graph convolutional networks,” Comput Secur, vol. 118, p. 102728, Jul. 2022, doi: 10.1016/j.cose.2022.102728.
[3] N. El Kamel, M. Eddabbah, Y. Lmoumen, and R. Touahni, “A Smart Agent Design for Cyber Security Based on Honeypot and Machine Learning,” Security and Communication Networks, vol. 2020, pp. 1–9, Aug. 2020, doi: 10.1155/2020/8865474.
[4] A. Yeboah-Ofori, S. Islam, S. W. Lee, Z. U. Shamszaman, K. Muhammad, M. Altaf, and M. S. Al-Rakhami, “Cyber Threat Predictive Analytics for Improving Cyber Supply Chain Security,” IEEE Access, vol. 9, pp. 94318–94337, 2021, doi: 10.1109/ACCESS.2021.3087109.
[5] I. H. Sarker, Y. B. Abushark, F. Alsolami, and A. I. Khan, “IntruDTree: A Machine Learning Based Cyber Security Intrusion Detection Model,” Symmetry (Basel), vol. 12, no. 5, p. 754, May 2020, doi: 10.3390/sym12050754.
[6] N. R. Rajalakshmi, S. V. E., C. K. Parameshwari, M. V., and P. M., “Cyber-security attack prediction using cognitive spectral clustering technique based on simulated annealing search,” Applied and Computational Engineering, vol. 6, no. 1, pp. 1360–1365, Jun. 2023, doi: 10.54254/2755-2721/6/20230791.
[7] A. O. David and O. O. Oluwasola, “Zero Day Attack Prediction with Parameter Setting Using Bi Direction Recurrent Neural Network in Cyber Security,” International Journal of Computer …, vol. 18, no. 3, 2020.
[8] M. A. Rahman, Y. Al-Saggaf, and T. Zia, “A Data Mining Framework to Predict Cyber Attack for Cyber Security,” in 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE, Nov. 2020, pp. 207–212. doi: 10.1109/ICIEA48937.2020.9248225.
[9] C. Sun, H. Hu, Y. Yang, and H. Zhang, “Prediction method of 0day attack path based on cyber defense knowledge graph,” Chinese Journal of Network and Information Security, vol. 8, no. 1, 2022, doi: 10.11959/j.issn.2096-109x.2021101.
[10] P. Datta, N. Lodinger, A. S. Namin, and K. S. Jones, “Predicting Consequences of Cyber-Attacks,” in 2020 IEEE International Conference on Big Data (Big Data), IEEE, Dec. 2020, pp. 2073–2078. doi: 10.1109/BigData50022.2020.9377825.
[11] A. Bilen and A. B. Özer, “Cyber-attack method and perpetrator prediction using machine learning algorithms,” PeerJ Comput Sci, vol. 7, p. e475, Apr. 2021, doi: 10.7717/peerj-cs.475.
[12] I. M. Kosmacheva, N. V Davidyuk, S. Belov, Y. Kuchin, I. Y. Kvyatkovskaya, M. F. Rudenko, and V. I. Lobeyko, “Predicting of cyber attacks on critical information infrastructure,” J Phys Conf Ser, vol. 2091, no. 1, p. 012062, Nov. 2021, doi: 10.1088/1742-6596/2091/1/012062.
[13] A. M. AL-Hawamleh, “Predictions of Cybersecurity Experts on Future Cyber-Attacks and Related Cybersecurity Measures,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 2, 2023, doi: 10.14569/IJACSA.2023.0140292.
[14] A. Abu Bakar and M. F. Zolkipli, “Cyber Security Threats and Predictions: A Survey,” International Journal of Advances in Engineering and Management (IJAEM), vol. 5, no. 2, 2023, doi: 10.35629/5252-0502733741.
[15] N. Polatidis, E. Pimenidis, M. Pavlidis, S. Papastergiou, and H. Mouratidis, “From product recommendation to cyber-attack prediction: generating attack graphs and predicting future attacks,” Evolving Systems, vol. 11, no. 3, pp. 479–490, Sep. 2020, doi: 10.1007/s12530-018-9234-z.
[16] S. Altalhi and A. Gutub, “A survey on predictions of cyber-attacks utilizing real-time twitter tracing recognition,” J Ambient Intell Humaniz Comput, vol. 12, no. 11, pp. 10209–10221, Nov. 2021, doi: 10.1007/s12652-020-02789-z.
[17] H. Albasheer, M. Md Siraj, A. Mubarakali, O. Elsier Tayfour, S. Salih, M. Hamdan, S. Khan, A. Zainal, and S. Kamarudeen, “Cyber-Attack Prediction Based on Network Intrusion Detection Systems for Alert Correlation Techniques: A Survey,” Sensors, vol. 22, no. 4, p. 1494, Feb. 2022, doi: 10.3390/s22041494.
[18] P. S. Prabha and S. M. Kumar, “A Novel Cyber-attack Leads Prediction System using Cascaded R2CNN Model,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 2, 2022, doi: 10.14569/IJACSA.2022.0130260.
[19] Prof. A. Narote, V. Zutshi, A. Potdar, and R. Vichare, “D-Dos Attack Prediction Using Machine Learning Algorithms,” Int J Res Appl Sci Eng Technol, vol. 10, no. 3, pp. 2303–2312, Mar. 2022, doi: 10.22214/ijraset.2022.41131.
[20] S. Srinivasan and P. Deepalakshmi, “ENetRM: ElasticNet Regression Model based malicious cyber-attacks prediction in real-time server,” Measurement: Sensors, vol. 25, p. 100654, Feb. 2023, doi: 10.1016/j.measen.2022.100654.
[21] M. Zuzcák and P. Bujok, “Using honeynet data and a time series to predict the number of cyber attacks,” Computer Science and Information Systems, vol. 18, no. 4, pp. 1197–1217, 2021, doi: 10.2298/CSIS200715040Z.
[22] J. Zhao, X. Liu, Q. Yan, B. Li, M. Shao, H. Peng, and L. Sun, “Automatically predicting cyber attack preference with attributed heterogeneous attention networks and transductive learning,” Comput Secur, vol. 102, p. 102152, Mar. 2021, doi: 10.1016/j.cose.2020.102152.
[23] A. H. Matey, P. Danquah, and G. Y. Koi-Akrofi, “Predicting Cyber-Attack using Cyber Situational Awareness: The Case of Independent Power Producers (IPPs),” International Journal of Advanced Computer Science and Applications, vol. 13, no. 1, 2022, doi: 10.14569/IJACSA.2022.0130181.
[24] A. Agur and U. Venugopal, “Cyber Security Attacks.”
[25] M. Hasan, A. Al-Maliki, and N. Jasim, “Review of SQL injection attacks: Detection, to enhance the security of the website from client-side attacks,” International Journal of Nonlinear Analysis and Applications, vol. 13, no. 1, 2022, doi: 10.22075/ijnaa.2022.6152.
[26] O. Alkadi, N. Moustafa, B. Turnbull, and K.-K. R. Choo, “A Deep Blockchain Framework-Enabled Collaborative Intrusion Detection for Protecting IoT and Cloud Networks,” IEEE Internet Things J, vol. 8, no. 12, pp. 9463–9472, Jun. 2021, doi: 10.1109/JIOT.2020.2996590.
[27] N. Zhang, S.-L. Shen, A. Zhou, and Y.-F. Jin, “Application of LSTM approach for modelling stress–strain behaviour of soil,” Appl Soft Comput, vol. 100, p. 106959, Mar. 2021, doi: 10.1016/j.asoc.2020.106959.
[28] R. M. Alguliyev, R. M. Aliguliyev, and F. J. Abdullayeva, “The Improved LSTM and CNN Models for DDoS Attacks Prediction in Social Media,” International Journal of Cyber Warfare and Terrorism, vol. 9, no. 1, pp. 1–18, Jan. 2019, doi: 10.4018/IJCWT.2019010101.
[29] N. Singh, P. Sharma, N. Kumar, and M. Sreejeth, “Short-Term Load Forecasting Using Artificial Neural Network and Time Series Model to Predict the Load Demand for Delhi and Greater Noida Cities,” in Lecture Notes in Networks and Systems, vol. 177 LNNS, 2021, pp. 443–455. doi: 10.1007/978-981-33-4501-0_41.
[30] Y. Liu, W. Zhang, Y. Yan, Z. Li, Y. Xia, and S. Song, “An Effective Rainfall–Ponding Multi-Step Prediction Model Based on LSTM for Urban Waterlogging Points,” Applied Sciences, vol. 12, no. 23, p. 12334, Dec. 2022, doi: 10.3390/app122312334.
[31] M. S. Devi, S. Basheer, and R. M. Mathew, “Exploration of Multiple Linear Regression with Ensembling Schemes for Roof Fall Assessment using Machine Learning,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 12, pp. 134–139, Oct. 2019, doi: 10.35940/ijitee.L3474.1081219.
[32] M. S. Devi, R. M. Mathew, and R. Suguna, “Regressor Fitting Of Feature Importance For Customer Segment Prediction With Ensembling Schemes Using Machine Learning,” Int J Eng Adv Technol, vol. 8, no. 6, pp. 952–956, Aug. 2019, doi: 10.35940/ijeat.F8255.088619.
[33] J. Liao, Y. Liang, and J. Pan, “Deep facial spatiotemporal network for engagement prediction in online learning,” Applied Intelligence, vol. 51, no. 10, pp. 6609–6621, Oct. 2021, doi: 10.1007/s10489-020-02139-8.
[34] Q. Wang, Y. Wei, C. Zhu, and K. Tian, “Research on Traffic Accident Risk Prediction Based on Spatio-Temporal Graph Convolutional Network,” Jisuanji Gongcheng/Computer Engineering, vol. 48, no. 11, 2022, doi: 10.19678/j.issn.1000-3428.0062961.
[35] J. Song, L. Zhang, G. Xue, Y. Ma, S. Gao, and Q. Jiang, “Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model,” Energy Build, vol. 243, p. 110998, Jul. 2021, doi: 10.1016/j.enbuild.2021.110998.
[36] İ. Kırbaş, A. Sözen, A. D. Tuncer, and F. Ş. Kazancıoğlu, “Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches,” Chaos Solitons Fractals, vol. 138, 2020, doi: 10.1016/j.chaos.2020.110015.
[37] T. Li, M. Hua, and X. Wu, “A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5),” IEEE Access, vol. 8, pp. 26933–26940, 2020, doi: 10.1109/ACCESS.2020.2971348.
[38] D. Fan, H. Sun, J. Yao, K. Zhang, X. Yan, and Z. Sun, “Well production forecasting based on ARIMA-LSTM model considering manual operations,” Energy, vol. 220, p. 119708, Apr. 2021, doi: 10.1016/j.energy.2020.119708.
[39] Y.-S. Chang, H.-T. Chiao, S. Abimannan, Y.-P. Huang, Y.-T. Tsai, and K.-M. Lin, “An LSTM-based aggregated model for air pollution forecasting,” Atmos Pollut Res, vol. 11, no. 8, pp. 1451–1463, Aug. 2020, doi: 10.1016/j.apr.2020.05.015.
[40] Y. Liu, W. Duan, L. Huang, S. Duan, and X. Ma, “The input vector space optimization for LSTM deep learning model in real-time prediction of ship motions,” Ocean Engineering, vol. 213, p. 107681, Oct. 2020, doi: 10.1016/j.oceaneng.2020.107681.
[41] J.-Y. Wu, M. Wu, Z. Chen, X.-L. Li, and R. Yan, “Degradation-Aware Remaining Useful Life Prediction With LSTM Autoencoder,” IEEE Trans Instrum Meas, vol. 70, pp. 1–10, 2021, doi: 10.1109/TIM.2021.3055788.
[42] S. Al-Janabi, M. Mohammad, and A. Al-Sultan, “A new method for prediction of air pollution based on intelligent computation,” Soft comput, vol. 24, no. 1, pp. 661–680, Jan. 2020, doi: 10.1007/s00500-019-04495-1.
[43] B. Du, H. Peng, S. Wang, M. Z. A. Bhuiyan, L. Wang, Q. Gong, L. Liu, and J. Li, “Deep Irregular Convolutional Residual LSTM for Urban Traffic Passenger Flows Prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 972–985, Mar. 2020, doi: 10.1109/TITS.2019.2900481.
[44] H. Zheng, F. Lin, X. Feng, and Y. Chen, “A Hybrid Deep Learning Model With Attention-Based Conv-LSTM Networks for Short-Term Traffic Flow Prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 6910–6920, Nov. 2021, doi: 10.1109/TITS.2020.2997352.
[45] S. Liyanage, R. Abduljabbar, H. Dia, and P.-W. Tsai, “AI-based neural network models for bus passenger demand forecasting using smart card data,” Journal of Urban Management, vol. 11, no. 3, pp. 365–380, Sep. 2022, doi: 10.1016/j.jum.2022.05.002.
[46] L. Liu, Y. Li, Y. Cao, J. Tang, J. Zhu, D. Yang, and W. Wang, “Transient rotor angle stability prediction method based on SVM and LSTM network,” Dianli Zidonghua Shebei/Electric Power Automation Equipment, vol. 40, no. 2, 2020, doi: 10.16081/j.epae.202001009.
DOI: 10.30595/juita.v12i1.20210
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2579-8901
- Visitor Stats
View JUITA Stats