Comparative Analysis of CNN Architectures for SIBI Image Classification

Yulrio Brianorman, Dewi Utami

Abstract


The classification of images from the Indonesian Sign Language System (SIBI) using VGG16, ResNet50, Inception, Xception, and MobileNetV2 Convolutional Neural Network (CNN) architectures is evaluated in this paper. With Google Colab Pro, a 224 × 224-pixel picture dataset was used for the study. A five-stage technique consisting of Dataset Collection, Dataset Preprocessing, Model Design, Model Training, and Model Testing was applied. Performance evaluation focused on accuracy, precision, recall, and F1-Score. The results identified VGG16 as the top-performing model with an accuracy of 99.60% and an equivalent F1-Score, followed closely by ResNet50 with nearly similar performance. Inception, XCeption, and MobileNetV2 demonstrated balanced performance but with lower accuracy. This study sheds light on the best CNN models to choose for SIBI image classification, and it makes recommendations for further research that include using sophisticated data augmentation methods, investigating novel CNN architectures, and putting the models to practical use.


Keywords


sign language, pre-trained model, CNN, MnetV2, VGG16, ResNet50, xception, inception

References


[1] Md Zahangir Alom , Tarek M. Taha , Chris Yakopcic , Stefan Westberg , Paheding Sidike , Mst Shamima Nasrin ,Brian C Van Essen , Abdul A S. Awwal , and Vijayan K. Asari, “The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches,” Mar. 2018, [Online]. Available: http://arxiv.org/abs/1803.01164

[2] A. Rozani, “Penerapan Metode Jaringan Syaraf Tiruan Pada Aplikasi Pengenalan Bahasa Isyarat Abjad Jari,” Jurnal Mahasiswa Teknik Informatika, vol. 1, no. 1, pp. 311–317, 2017, doi: https://doi.org/10.36040/jati.v1i1.1897.

[3] M. Bagus, S. Bakti, and Y. M. Pranoto, “Pengenalan Angka Sistem Isyarat Bahasa Indonesia Dengan Menggunakan Metode Convolutional Neural Network,” in Prosiding SEMNAS INOTEK, 2021, pp. 11–16. doi: https://doi.org/10.29407/inotek.v3i1.504.

[4] D. Yolanda, K. Gunadi, and E. Setyati, “Pengenalan Alfabet Bahasa Isyarat Tangan Secara Real-Time dengan Menggunakan Metode Convolutional Neural Network dan Recurrent Neural Network,” JURNAL INFRA, vol. 8, no. 1, 2020.

[5] I. P. I. Perdana, I. K. G. D. Putra, A. Dharmaadi, and I. Putu, “Classification of Sign Language Numbers Using the CNN Method,” Jurnal Ilmiah Teknologi dan Komputer, vol. 2, no. 3, pp. 485–493, 2021.

[6] M. Sholawati, K. Auliasari, and FX. Ariwibisono, “Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (CNN),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 1, pp. 134–144, Mar. 2022, doi: 10.36040/jati.v6i1.4507.

[7] Z. Fadhilah and N. L. Marpaung, “Pengenalan Alfabet SIBI Menggunakan Convolutional Neural Network sebagai Media Pembelajaran Bagi Masyarakat Umum,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 2, pp. 162–168, May 2023, doi: 10.30591/jpit.v8i2.5221.

[8] M. F. Naufal and S. F. Kusuma, “Analisis Perbandingan Algoritma Machine Learning dan Deep Learning untuk Klasifikasi Citra Sistem Isyarat Bahasa Indonesia (SIBI),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 4, pp. 873–882, Aug. 2023, doi: 10.25126/jtiik.20241046823.

[9] L. Tresnawati and D. B. Sukriyansah, “Image Classification on Garutan Batik Using Convolutional Neural Network with Data Augmentation,” Jurnal Informatika, vol. 11, no. 1, pp. 107–115, 2023, [Online]. Available: www.kaggle.com/datasets/ionisiusdh/indones

[10] H. A. Nugroho, S. Hasanah, and M. Yusuf, “Seismic Data Quality Analysis Based on Image Recognition Using Convolutional Neural Network,” Jurnal Informatika, vol. 10, no. 1, pp. 67–75, 2022.

[11] C. Sri, K. Aditya, V. Rahmayanti, S. Nastiti, Q. R. Damayanti, and G. B. Sadewa, “Implementation of Convolutional Neural Network Method in Identifying Fashion Image,” Jurnal Informatika, vol. 11, no. 2, pp. 195–202, 2023.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 2818–2826. doi: 10.1109/CVPR.2016.308.

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Jun. 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[15] S. Liu and W. Deng, “Very deep convolutional neural network based image classification using small training sample size,” in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), IEEE, Nov. 2015, pp. 730–734. doi: 10.1109/ACPR.2015.7486599.

[16] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jul. 2017, pp. 1800–1807. doi: 10.1109/CVPR.2017.195.

[17] V. S. Navale, “Bone Abnormalities Detection and Classification Using Deep Learning-Vgg16 Algorithm,” Int J Res Appl Sci Eng Technol, vol. 11, no. 7, pp. 122–129, Jul. 2023, doi: 10.22214/ijraset.2023.54582.

[18] W. Bakasa and S. Viriri, “VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas Cancer Prediction,” J Imaging, vol. 9, no. 7, p. 138, Jul. 2023, doi: 10.3390/jimaging9070138.


Full Text: PDF

DOI: 10.30595/juita.v12i1.20608

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2579-8901