A Review: Photodynamic Therapy on Wound Healing
DOI:
https://doi.org/10.30595/pharmacy.v21i2.24377Keywords:
Mice, photodynamic therapy, photosensitizer, wound healing.Abstract
Background: Wound infection poses a significant challenge in wound healing, so overcoming microbial infections and accelerating wounds can be done using PDT (Photodynamic Therapy). PDT is a non-invasive therapeutic method, light-based therapeutic method that can treat several pathological conditions such as wound healing, antimicrobial, antibiotic resistance bacteria, cancer, and skin repair. Objective: The review article aims to evaluate the effectiveness of PDT in accelerating wound healing. Methods: All articles in this review were taken from the Pubmed and Google Scholar internet databases from 2019 to 2024. Results: Twelve photosensitizers were explored for wound healing using PDT. Some were used in singular form, while others were used in combination. PDT promotes wound healing by killing bacterial cells and stimulating fibroblast proliferation, producing collagen and elastin. The mechanism for faster wound healing was detected by increasing the epithelialization process, decreasing angiogenesis, reducing the number of fibroblast cells, and raising collagen density. Conclusion: Based on research, PDT uses a specific photosensitizer that is activated by light to produce Reactive Oxygen Species (ROS) so that in wound healing, PDT stimulates the wound healing process by improving the quality of tissue formed, fast wound closure, reducing the risk of complications, increasing blood circulation, reduces inflammation and promotes the proliferation of cells involved in tissue regeneration.
References
Abo-Neima, S. E., El-Sheekh, M. M., Al-Zaban, M. I., & EL-Sayed, A. I. M. (2023). Antibacterial and anti-corona virus (229E) activity of Nigella sativa oil combined with photodynamic therapy based on methylene blue in wound infection: in vitro and in vivo study. BMC Microbiology, 23(1), 1–18. https://doi.org/10.1186/s12866-023-03018-1
Adili, F., Scholz, T., Hille, M., Heckenkamp, J., Barth, S., Engert, A., & Schmitz-Rixen, T. (2002). Photodynamic Therapy Mediated Induction of Accelerated Re-endothelialisation Following Injury to the Arterial Wall: Implications for the Prevention of Postinterventional Restenosis. European Journal of Vascular and Endovascular Surgery, 24(2), 166–175. https://doi.org/https://doi.org/10.1053/ejvs.2002.1703
Akbarizare, M. (2022). Photodynamic Inactivation Property of Saffron (Crocus sativus) as a Natural Photosensitizer in Combination with Blue Light in Microbial Strains. Iranian Journal of Medical Microbiology, 16(6), 587–593. https://doi.org/10.30699/ijmm.16.6.587
Alsaif, A., Tahmassebi, J. F., & Wood, S. R. (2021). Treatment of dental plaque biofilms using photodynamic therapy: a randomised controlled study. European Archives of Paediatric Dentistry, 22(5), 791–800. https://doi.org/10.1007/s40368-021-00637-y
Alves, E., Faustino, M. A. F., Tomé, J. P. C., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Cunha, A., Gomes, N. C. M., & Almeida, A. (2013). Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins. Bioorganic & Medicinal Chemistry, 21(14), 4311–4318. https://doi.org/10.1016/j.bmc.2013.04.065
Amos-Tautua, B. M., Songca, S. P., & Oluwafemi, O. S. (2019). Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules (Basel, Switzerland), 24(13). https://doi.org/10.3390/molecules24132456
Arshad, T., Mansur, F., Palek, R., Manzoor, S., & Liska, V. (2020). A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Frontiers in Immunology, 11(September), 1–17. https://doi.org/10.3389/fimmu.2020.02148
Astuti, S. D., Pertiwi, W. I., Wahyuningsih, S. P. A., Permatasari, P. A. D., Nurdin, D. Z. I., & Syahrom, A. (2023). Effectiveness of ozone-laser photodynamic combination therapy for healing wounds infected with methicillin-resistant Staphylococcus aureus in mice. Veterinary World, 16(5), 1176–1184. https://doi.org/10.14202/vetworld.2023.1176-1184
Awad, M. M., Tovmasyan, A., Craik, J. D., Batinic-Haberle, I., & Benov, L. T. (2016). Important cellular targets for antimicrobial photodynamic therapy. Applied Microbiology and Biotechnology, 100(17), 7679–7688. https://doi.org/10.1007/s00253-016-7632-3
Bassan, E., Gualandi, A., Cozzi, P. G., & Ceroni, P. (2021). Design of BODIPY dyes as triplet photosensitizers: Electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chemical Science, 12(19), 6607–6628. https://doi.org/10.1039/d1sc00732g
Bdeir, K., Gollomp, K., Stasiak, M., Mei, J., Papiewska-Pajak, I., Zhao, G., Worthen, G. S., Cines, D. B., Poncz, M., & Kowalska, M. A. (2017). Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 56(2), 261–270. https://doi.org/10.1165/rcmb.2015-0245OC
Bowler, P. G., Duerden, B. I., & Armstrong, D. G. (2001). Wound microbiology and associated approaches to wound management. Clinical Microbiology Reviews, 14(2), 244–269. https://doi.org/10.1128/CMR.14.2.244-269.2001
Brunda, K., Kavitha Rani, B., Ravikumar, P., Shashidhar, B., Ravi, R., Akash, J., Meghana, S., Author, C., Shankar, B., Manjunatha, S., Jayaramu, G., Shridhar, N., Lakshmishree, K., Anupama, P., Santhoshkumar, C., & Niranjan Murthy, C. (2023). Tissue repair and regeneration. 12(10), 32–46.
Bu, F., Kang, X., Tang, D., Liu, F., Chen, L., Zhang, P., Feng, W., Yu, Y., Li, G., Xiao, H., & Wang, X. (2024). Enhancing near-infrared II photodynamic therapy with nitric oxide for eradicating multidrug-resistant biofilms in deep tissues. Bioactive Materials, 33(September 2023), 341–354. https://doi.org/10.1016/j.bioactmat.2023.11.006
Buzzá, H. H., Alves, F., Tomé, A. J. B., Chen, J., Kassab, G., Bu, J., Bagnato, V. S., Zheng, G., & Kurachi, C. (2022). Porphyrin nanoemulsion for antimicrobial photodynamic therapy: effective delivery to inactivate biofilm-related infections. Proceedings of the National Academy of Sciences of the United States of America, 119(46), 1–9. https://doi.org/10.1073/pnas.2216239119
Caldwell, M. D. (2020). Bacteria and Antibiotics in Wound Healing. The Surgical Clinics of North America, 100(4), 757–776. https://doi.org/10.1016/j.suc.2020.05.007
Carter, M. J., DaVanzo, J., Haught, R., Nusgart, M., Cartwright, D., & Fife, C. E. (2023). Chronic wound prevalence and the associated cost of treatment in Medicare beneficiaries: changes between 2014 and 2019. Journal of Medical Economics, 26(1), 894–901. https://doi.org/10.1080/13696998.2023.2232256
Chai, N., Stachon, T., Berger, T., Li, Z., Seitz, B., Langenbucher, A., & Szentmáry, N. (2023). Human corneal epithelial cell and fibroblast migration and growth factor secretion after rose bengal photodynamic therapy (RB-PDT) and the effect of conditioned medium. PLoS ONE, 18(12 December), 1–19. https://doi.org/10.1371/journal.pone.0296022
Chen, M., Han, Q., Zhang, M., Liu, Y., Wang, L., Yang, F., Li, Q., Cao, Z., Fan, C., & Liu, J. (2024). Upconversion dual-photosensitizer–expressing bacteria for near-infrared monochromatically excitable synergistic phototherapy. Science Advances, 10(10), 1–16. https://doi.org/10.1126/sciadv.adk9485
Chen, P., Zou, Y., Liu, Y., Han, W., Zhang, M., Wu, Y., & Yin, R. (2024). Low-level photodynamic therapy in chronic wounds. Photodiagnosis and Photodynamic Therapy, 46(February), 104085. https://doi.org/10.1016/j.pdpdt.2024.104085
Cheng, G., & Li, B. (2020). Nanoparticle-based photodynamic therapy: new trends in wound healing applications. Materials Today Advances, 6. https://doi.org/10.1016/j.mtadv.2019.100049
Cheng, K., Guo, Q., Shen, Z., Yang, W., Wang, Y., Sun, Z., & Wu, H. (2022). Bibliometric Analysis of Global Research on Cancer Photodynamic Therapy: Focus on Nano-Related Research. Frontiers in Pharmacology, 13(June), 1–19. https://doi.org/10.3389/fphar.2022.927219
Chiu, W., Tran, T. V., Pan, S., Huang, H., Chen, Y., & Wong, T. (2019). Cystic Fibrosis Transmembrane Conductance Regulator : A Possible New Target for Photodynamic Therapy Enhances Wound Healing. 8(10), 476–486. https://doi.org/10.1089/wound.2018.0927
Cho, G. L., & Ha, J. W. (2020). Erythrosine B (Red Dye No. 3): A potential photosensitizer for the photodynamic inactivation of foodborne pathogens in tomato juice. Journal of Food Safety, 40(4). https://doi.org/10.1111/jfs.12813
Corsi, A., Lecci, P. P., Bacci, S., Cappugi, P., & Pimpinelli, N. (2016). Early activation of fibroblasts during PDT treatment in leg ulcers. Giornale Italiano Di Dermatologia e Venereologia : Organo Ufficiale, Societa Italiana Di Dermatologia e Sifilografia, 151(3), 223–229.
Damrongrungruang, T., Puasiri, S., Vongtavatchai, V., Saeng-on, C., Petcharapiruch, T., Teerakapong, A., & Sangpanya, A. (2023). Anticandidal Efficacy of Erythrosine with Nano-TiO2 and Blue LED-Mediated Photodynamic Therapy against Candida albicans Biofilms on Acrylic Resin: A Preliminary Study. European Journal of Dentistry. https://doi.org/10.1055/s-0043-1768165
Dantas, J. B. D. L., Fortuna, T., Cella, H. R. Della, Da Silva, F. L. M. D. S., Santana, R. C., & Martins, G. B. (2023). Evaluation of the effect of Matricaria recutita monotherapy or in combination with photodynamic therapy on tissue repair in the dorsum of the tongue of rats*. Journal of Applied Oral Science, 31, 1–14. https://doi.org/10.1590/1678-7757-2023-0211
de Carvalho, B. M. D. F., Garcia, B. A., Gomes, A. K. P., Alcantara, D. D., & de Freitas Pontes, K. M. (2023). Antimicrobial Photodynamic Therapy as a Technique for Decontamination of Acrylic Resin Devices Provided by Different Dental Laboratories. Journal of Lasers in Medical Sciences, 14. https://doi.org/10.34172/JLMS.2023.08
de Souza, M. V. F., Shinobu-Mesquita, C. S., Meirelles, L. E. F., Mari, N. L., César, G. B., Gonçalves, R. S., Caetano, W., Damke, E., Silva, V. R. S., Damke, G. M. Z. F., & Consolaro, M. E. L. (2022). Effects of Hypericin Encapsulated on Pluronic F127 Photodynamic Therapy Against Triple Negative Breast Cancer. Asian Pacific Journal of Cancer Prevention, 23(5), 1741–1751. https://doi.org/10.31557/APJCP.2022.23.5.1741
Death, T. I. C., Liang, Y., Wang, P., Liu, Z., Sun, H., Wang, Q., Sun, G., Zhang, X., Li, Y., & Xie, S. (2023). Dual Stimuli-Responsive Micelles for Imaging-Guided Mitochondrion-Targeted Photothermal / Photodynamic / Chemo Combination. August, 4381–4402.
Dey, A., Singhvi, G., Puri, A., Kesharwani, P., & Dubey, S. K. (2022). An insight into photodynamic therapy towards treating major dermatological conditions. Journal of Drug Delivery Science and Technology, 76, 1–39. https://doi.org/10.1016/j.jddst.2022.103751
Digby, E. M., Tung, M. T., Kagalwala, H. N., Ryan, L. S., Lippert, A. R., & Beharry, A. A. (2021). Dark Dynamic Therapy: Photosensitization without Light Excitation Using Chemiluminescence Resonance Energy Transfer in a Dioxetane-Erythrosin B Conjugate. ACS Chemical Biology, 17(5), 1082–1091. https://doi.org/10.1021/acschembio.1c00925
Djalil, A. D., Nurulita, N. A., Limantara, L. W., Ibrahim, S., & Tjahjono, D. H. (2012). Biological evaluations of protoporphyrin IX, pheophorbide a, and its 1-hydroxyethyl derivativess for application in photodynamic therapy. International Journal of Pharmacy and Pharmaceutical Sciences, 4(SUPPL.3), 741–746.
Du, J., Wan, Z., Wang, C., Lu, F., Wei, M., Wang, D., & Hao, Q. (2021). Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics, 11(17), 8185–8196. https://doi.org/10.7150/THNO.59121
Dudzik, T., Domański, I., & Makuch, S. (2024). The impact of photodynamic therapy on immune system in cancer – an update. Frontiers in Immunology, 15(February), 1–10. https://doi.org/10.3389/fimmu.2024.1335920
Duerden, B. I. (1994). Virulence factors in anaerobes. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 18 Suppl 4, S253-9. https://doi.org/10.1093/clinids/18.supplement_4.s253
Gholami, L., Shahabi, S., Jazaeri, M., Hadilou, M., & Fekrazad, R. (2023). Clinical applications of antimicrobial photodynamic therapy in dentistry. Frontiers in Microbiology, 13(January). https://doi.org/10.3389/fmicb.2022.1020995
Gonçalves, M. L. L., Santos, E. M., Renno, A. C. M., Horliana, A. C. R. T., Cruz, M. de A., Parisi, J. R., Prates, R. A., Leal-Rossi, A., Fernandes, K. P. S., Mesquita-Ferrari, R. A., & Bussadori, S. K. (2021). Erythrosine as a photosensitizer for antimicrobial photodynamic therapy with blue light-emitting diodes – An in vitro study. Photodiagnosis and Photodynamic Therapy, 35(July). https://doi.org/10.1016/j.pdpdt.2021.102445
Gong, G., Pan, J., He, Y., Shang, J., Wang, X., Zhang, Y., Zhang, G., Wang, F., Zhao, G., & Guo, J. (2022). Self-assembly of nanomicelles with rationally designed multifunctional building blocks for synergistic chemo-photodynamic therapy. Theranostics, 12(5), 2028–2040. https://doi.org/10.7150/thno.68563
Grandi, V., Bacci, S., Corsi, A., Sessa, M., Puliti, E., Murciano, N., Scavone, F., Cappugi, P., & Pimpinelli, N. (2018). ALA-PDT exerts beneficial effects on chronic venous ulcers by inducing changes in inflammatory microenvironment, especially through increased TGF-beta release: A pilot clinical and translational study. Photodiagnosis and Photodynamic Therapy, 21, 252–256. https://doi.org/10.1016/j.pdpdt.2017.12.012
Guo, N., Chen, J., Kong, F., Gao, Y., Bian, J., Liu, T., Hong, G., & Zhao, Z. (2024). 5-Aminolevulinic Acid Photodynamic Therapy for Chronic Wound Infection in Rats With Diabetes. Biomedicine and Pharmacotherapy, 178(April), 117132. https://doi.org/10.1016/j.biopha.2024.117132
Hamed, E., Al Balah, O. F. A., Refaat, M., Badr, A. M., & Afifi, A. (2024). Photodynamic therapy mediated by methylene blue-loaded PEG accelerates skin mouse wound healing: an immune response. Lasers in Medical Science, 39(1). https://doi.org/10.1007/s10103-024-04084-1
He, G., Li, Y., Younis, M. R., Fu, L. H., He, T., Lei, S., Lin, J., & Huang, P. (2022). Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy. Nature Communications, 13(1), 1–18. https://doi.org/10.1038/s41467-022-33837-1
He, J., Weng, T., Ba, W., Liang, X., Yang, Y., & Li, C. (2024). Photodynamic therapy for cutaneous inflammatory pseudotumour: A case report. Photodiagnosis and Photodynamic Therapy, 45(January), 103962. https://doi.org/10.1016/j.pdpdt.2024.103962
He, X., Luo, Y., Li, Y., Pan, Y., Kwok, R. T. K., He, L., Duan, X., Zhang, P., Wu, A., Tang, B. Z., & Li, J. (2024). D-type neuropeptide decorated AIEgen/RENP hybrid nanoprobes with light-driven ROS generation ability for NIR-II fluorescence imaging-guided through-skull photodynamic therapy of gliomas. Aggregate, 5(1), 1–11. https://doi.org/10.1002/agt2.396
Hong, J., Zhu, J., Cao, X., Pang, B., Xian, J., Yin, X., Deng, Q., Chen, M., Qin, Z., Liu, C., Nath Varma, S., Xiao, Y., Xiao, L., & Li, M. (2024). Photo-triggered multifunctional gold-based hybrid nanoflowers promote infectious skin regeneration. Chemical Engineering Journal, 482(December 2023), 148937. https://doi.org/10.1016/j.cej.2024.148937
Hu, Y., Qi, X., Sun, H., Lu, Y., Hu, Y., Chen, X., Liu, K., Yang, Y., Mao, Z., Wu, Z., & Zhou, X. (2019). Photodynamic therapy combined with antifungal drugs against chromoblastomycosis and the effect of ALA-PDT on Fonsecaea in vitro. PLoS Neglected Tropical Diseases, 13(10), 1–14. https://doi.org/10.1371/journal.pntd.0007849
Huang, C. J., Pu, C. M., Su, S. Y., Lo, S. L., Lee, C. H., & Yen, Y. H. (2023). Improvement of wound healing by capsaicin through suppression of the inflammatory response and amelioration of the repair process. Molecular Medicine Reports, 28(2), 1–13. https://doi.org/10.3892/MMR.2023.13042
Huang, Jianfeng, Li, H., Bai, Z., Liu, W., & Zhang, J. (2023). Porous SiO 2 -Based Reactor with Self-Supply of O 2 and H 2 O 2 for Synergistic Photo-Thermal / Photodynamic Therapy. June, 3623–3639.
Huang, Jianhua, Wu, S., Wu, M., Zeng, Q., Wang, X., & Wang, H. (2021). Efficacy of the therapy of 5-aminolevulinic acid photodynamic therapy combined with human umbilical cord mesenchymal stem cells on methicillin-resistant Staphylococcus aureus-infected wound in a diabetic mouse model. Photodiagnosis and Photodynamic Therapy, 36(May), 102480. https://doi.org/10.1016/j.pdpdt.2021.102480
Huang, T., Zhou, Z., Li, Q., Tang, X., Chen, X., Ge, Y., & Ling, J. (2022). Light-Triggered Adhesive Silk-Based Film for Effective Photodynamic Antibacterial Therapy and Rapid Hemostasis. Frontiers in Bioengineering and Biotechnology, 9(January), 1–9. https://doi.org/10.3389/fbioe.2021.820434
Huang, W., Yuan, H., Yang, H., Tong, L., Gao, R., Kou, X., Wang, J., Ma, X., Huang, S., Zhu, F., Chen, G., & Ouyang, G. (2022). Photodynamic Hydrogen-Bonded Biohybrid Framework: A Photobiocatalytic Cascade Nanoreactor for Accelerating Diabetic Wound Therapy. JACS Au, 2(9), 2048–2058. https://doi.org/10.1021/jacsau.2c00321
Huang, Y., Guan, Z., Dai, X., Shen, Y., Wei, Q., Ren, L., Jiang, J., Xiao, Z., Jiang, Y., Liu, D., Huang, Z., Xu, X., Luo, Y., & Zhao, C. (2021). Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nature Communications, 12(1), 1–22. https://doi.org/10.1038/s41467-021-24564-0
Hurlow, J., & Bowler, P. G. (2022). Acute and chronic wound infections: microbiological, immunological, clinical and therapeutic distinctions. Journal of Wound Care, 31(5), 436–445. https://doi.org/10.12968/jowc.2022.31.5.436
Ji, J., Zhang, R., Li, H., Zhu, J., Pan, Y., & Guo, Q. (2020). Analgesic and anti-inflammatory effects and mechanism of action of borneol on photodynamic therapy of acne. Environmental Toxicology and Pharmacology, 75(February 2019). https://doi.org/10.1016/j.etap.2020.103329
Jimi, S., Jaguparov, A., Nurkesh, A., Sultankulov, B., & Saparov, A. (2020). Sequential Delivery of Cryogel Released Growth Factors and Cytokines Accelerates Wound Healing and Improves Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 8(April), 1–14. https://doi.org/10.3389/fbioe.2020.00345
Jin, Y., Lu, Y., Jiang, X., Wang, M., Yuan, Y., Zeng, Y., Guo, L., & Li, W. (2024). Accelerated infected wound healing by probiotic-based living microneedles with long-acting antibacterial effect. Bioactive Materials, 38(May), 292–304. https://doi.org/10.1016/j.bioactmat.2024.05.008
Khorsandi, K., Fekrazad, R., & Hamblin, M. R. (2021). Low-dose photodynamic therapy effect on closure of scratch wounds of normal and diabetic fibroblast cells: An in vitro study. Journal of Biophotonics, 14(7), e202100005. https://doi.org/10.1002/jbio.202100005
Kirchner, S., Lei, V., & MacLeod, A. S. (2020). The Cutaneous Wound Innate Immunological Microenvironment. International Journal of Molecular Sciences, 21(22). https://doi.org/10.3390/ijms21228748
Lee, D., Kwon, S., Jang, S. young, Park, E., Lee, Y., & Koo, H. (2022). Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticles. Bioactive Materials, 8(June 2021), 20–34. https://doi.org/10.1016/j.bioactmat.2021.06.019
Leśków, N., Karp, Z., Banaszewski, M., Popielska, K., Grześkowiak, M., Mikołajski, J., Mozdziak, P. E., & Kranc, W. (2023). Characteristics and cellular mechanism of the wound healing process in the oral mucosa. Medical Journal of Cell Biology, 11(1), 1–12. https://doi.org/10.2478/acb-2023-0001
Li Pomi, F., Vaccaro, M., Peterle, L., & Borgia, F. (2024). Photodynamic therapy for severe acne. Photodiagnosis and Photodynamic Therapy, 45(September 2023), 103893. https://doi.org/10.1016/j.pdpdt.2023.103893
Liu, D., Liu, L., Liu, F., Zhang, M., Wei, P., & Yi, T. (2021). HOCl-Activated Aggregation of Gold Nanoparticles for Multimodality Therapy of Tumors. Advanced Science, 8(17), 1–9. https://doi.org/10.1002/advs.202100074
Liu, M., Chen, Y., Guo, Y., Yuan, H., Cui, T., Yao, S., Jin, S., Fan, H., Wang, C., Xie, R., He, W., & Guo, Z. (2022). Golgi apparatus-targeted aggregation-induced emission luminogens for effective cancer photodynamic therapy. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29872-7
Liu, X., Fang, R., Feng, R., Li, Q., Su, M., Hou, C., Zhuang, K., Dai, Y., Lei, N., Jiang, Y., Liu, Y., & Ran, Y. (2022). Cage-modified hypocrellin against multidrug-resistant Candida spp. with unprecedented activity in light-triggered combinational photodynamic therapy. Drug Resistance Updates, 65(November), 100887. https://doi.org/10.1016/j.drup.2022.100887
Liu, X., Guo, C., Zhuang, K., Chen, W., Zhang, M., Dai, Y., Tan, L., & Ran, Y. (2022). A recyclable and light-triggered nanofibrous membrane against the emerging fungal pathogen Candida auris. PLoS Pathogens, 18(5), 1–23. https://doi.org/10.1371/journal.ppat.1010534
Luke-Marshall, N. R., Hansen, L. A., Shafirstein, G., & Campagnari, A. A. (2020). Antimicrobial Photodynamic Therapy with Chlorin e6 Is Bactericidal against Biofilms of the Primary Human Otopathogens. MSphere, 5(4), 1–11. https://doi.org/10.1128/msphere.00492-20
Luo, T., Nash, G. T., Xu, Z., Jiang, X., Liu, J., & Lin, W. (2021). Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy. Journal of the American Chemical Society, 143(34), 13519–13524. https://doi.org/10.1021/jacs.1c07379
Ma, T. Q., Chen, N. N., Xiao, R. C., Li, Q. R., Zhan, M. Y., Gou, C. L., Hu, J., Leng, F., Li, L. G., Han, N., Li, H. T., Peng, X. C., Chen, S. Y., Li, X. Y., & Li, T. F. (2024). Indocyanine green-loaded platelet activated by photodynamic and photothermal effects for selective control of wound repair. Photodiagnosis and Photodynamic Therapy, 45(November 2023), 103945. https://doi.org/10.1016/j.pdpdt.2023.103945
Mack, K. L., Talbott, H. E., Griffin, M. F., Parker, J. B. L., Guardino, N. J., Spielman, A. F., Davitt, M. F., Mascharak, S., Downer, M., Morgan, A., Valencia, C., Akras, D., Berger, M. J., Wan, D. C., Fraser, H. B., & Longaker, M. T. (2024). regeneration in mice. 30(10), 1368–1381. https://doi.org/10.1016/j.stem.2023.08.010.Allele-specific
Maya, R., Costa Ladeira, L. L., Maya, J. E. P., Gonçalves, L. M., Bussadori, S. K., & Paschoal, M. A. B. (2020). The combination of antimicrobial photodynamic therapy and photobiomodulation therapy for the treatment of palatal ulcers: A case report. Journal of Lasers in Medical Sciences, 11(2), 228–233. https://doi.org/10.34172/JLMS.2020.38
Meng, S., Xu, Z., Wang, X., Liu, Y., Li, B., Zhang, J., Zhang, X., & Liu, T. (2023). Synthesis and photodynamic antimicrobial chemotherapy against multi-drug resistant Proteus mirabilis of ornithine-porphyrin conjugates in vitro and in vivo. Frontiers in Microbiology, 14(June). https://doi.org/10.3389/fmicb.2023.1196072
Minagawa, E., Yamauchi, N., Taguchi, Y., & Umeda, M. (2023). Photodynamic reactions using high-intensity red LED promotes gingival wound healing by ROS induction. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-43966-2
Mirzahosseinipour, M., Khorsandi, K., Hosseinzadeh, R., Ghazaeian, M., & Shahidi, F. K. (2020). Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagnosis and Photodynamic Therapy, 29(September 2019), 101639. https://doi.org/10.1016/j.pdpdt.2019.101639
Nardini, P., Notari, L., Magazzini, M., Mariani, B., Rossi, F., Rossi, S., Van Aardt, E., Marszalek, K., Grandi, V., Corsi, A., Pimpinelli, N., & Bacci, S. (2024). Neuroimmunomodulatory effect of Nitric Oxide on chronic wound healing after photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 47, 104078. https://doi.org/https://doi.org/10.1016/j.pdpdt.2024.104078
Negut, I., Grumezescu, V., & Grumezescu, A. M. (2018). Treatment strategies for infected wounds. Molecules, 23(9), 1–23. https://doi.org/10.3390/molecules23092392
Ning, X., He, G., Zeng, W., & Xia, Y. (2022). The photosensitizer-based therapies enhance the repairing of skin wounds. Frontiers in Medicine, 9(August). https://doi.org/10.3389/fmed.2022.915548
Osaki, Tomohiro, Hibino, Shota, Murahata, Yusuke, Amaha, Takao, Yokoe, Inoru, Yamashita, Masamichi, Nomoto, Akihiro, Yano, Shigenobu, Tanaka, Mamoru Tanaka, Kataoka, Hiromi, Okamoto, Y. (2023). Vascular-targeted photodynamic therapywith glucose-conjugated chlorin e6 for dogs with spontaneously occurring tumours (p. 8).
Oyama, J., Fernandes Herculano Ramos-Milaré, Á. C., Lopes Lera-Nonose, D. S. S., Nesi-Reis, V., Galhardo Demarchi, I., Alessi Aristides, S. M., Juarez Vieira Teixeira, J., Gomes Verzignassi Silveira, T., & Campana Lonardoni, M. V. (2020). Photodynamic therapy in wound healing in vivo: a systematic review. Photodiagnosis and Photodynamic Therapy, 30(January), 101682. https://doi.org/10.1016/j.pdpdt.2020.101682
Pérez, M., Robres, P., Moreno, B., Bolea, R., Verde, M. T., Pérez-Laguna, V., Aspiroz, C., Gilaberte, Y., & Rezusta, A. (2021). Comparison of Antibacterial Activity and Wound Healing in a Superficial Abrasion Mouse Model of Staphylococcus aureus Skin Infection Using Photodynamic Therapy Based on Methylene Blue or Mupirocin or Both. Frontiers in Medicine, 8, 673408. https://doi.org/10.3389/fmed.2021.673408
Pourhajibagher, M., Pourakbari, B., & Bahador, A. (2022). Contribution of antimicrobial photo-sonodynamic therapy in wound healing: an in vivo effect of curcumin-nisin-based poly (L-lactic acid) nanoparticle on Acinetobacter baumannii biofilms. BMC Microbiology, 22(1), 1–16. https://doi.org/10.1186/s12866-022-02438-9
Pucelik, B., & Dąbrowski, J. M. (2022). Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. Advances in Inorganic Chemistry, 79, 65–103. https://doi.org/10.1016/bs.adioch.2021.12.003
Qin, X., Wu, C., Niu, D., Qin, L., Wang, X., Wang, Q., & Li, Y. (2021). Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy. Nature Communications, 12(1), 1–15. https://doi.org/10.1038/s41467-021-25561-z
Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: A cellular perspective. Physiological Reviews, 99(1), 665–706. https://doi.org/10.1152/physrev.00067.2017
Rodrigues, V. C., Santos, A. R. dos, Bona, E., Freitas, C. F., Silva, J. V. de O., Malacarne, L. C., Machinski Junior, M., Abreu Filho, B. A. de, & Mikcha, J. M. G. (2024). Optimization of the Erythrosine-mediated photodynamic therapy against Escherichia coli using response surface methodology. Photodiagnosis and Photodynamic Therapy, 45(November 2023). https://doi.org/10.1016/j.pdpdt.2023.103916
Sahu, K., Sharma, M., Dube, A., & Gupta, P. K. (2015). Topical antimicrobial photodynamic therapy improves angiogenesis in wounds of diabetic mice. Lasers in Medical Science, 30(7), 1923–1929. https://doi.org/10.1007/s10103-015-1784-8
Sen, C. K. (2019). Human Wounds and Its Burden: An Updated Compendium of Estimates. Advances in Wound Care, 8(2), 39–48. https://doi.org/10.1089/wound.2019.0946
Sen, C. K. (2023). Human Wound and Its Burden: Updated 2022 Compendium of Estimates. Advances in Wound Care, 12(12), 657–670. https://doi.org/10.1089/wound.2023.0150
Shao, J., Hu, M., Wang, W., Pan, Z., Zhao, D., Liu, J., Lv, M., Zhang, Y., & Li, Z. (2024). Indocyanine green based photodynamic therapy for keloids: Fundamental investigation and clinical improvement. Photodiagnosis and Photodynamic Therapy, 45(October 2023), 103903. https://doi.org/10.1016/j.pdpdt.2023.103903
Soares, N., Ferreira-strixino, J., & Pacheco-soares, C. (2024). Editorial : Photodynamic therapy : challenges and innovations for treating cancer. December, 1–2. https://doi.org/10.3389/fonc.2024.1526550
Son, J., Yi, G., Kwak, M. H., Yang, S. M., Park, J. M., Lee, B. I., Choi, M. G., & Koo, H. (2019). Gelatin-chlorin e6 conjugate for in vivo photodynamic therapy. Journal of Nanobiotechnology, 17(1), 1–12. https://doi.org/10.1186/s12951-019-0475-1
Strazzi Sahyon, H. B., Silva, P. P. da, Oliveira, M. S. de, Cintra, L. T. A., Dezan-Júnior, E., Gomes-Filho, J. E., Jacinto, R. de C., dos Santos, P. H., & Sivieri-Araujo, G. (2019). Influence of curcumin photosensitizer in photodynamic therapy on the mechanical properties and push-out bond strength of glass-fiber posts to intraradicular dentin. Photodiagnosis and Photodynamic Therapy, 25(October 2018), 376–381. https://doi.org/10.1016/j.pdpdt.2019.01.025
Sun, Y., Tosa, M., Takada, H., & Ogawa, R. (2020). Photodynamic therapy delays cutaneous wound healing in mice. Journal of Nippon Medical School, 87(3), 110–117. https://doi.org/10.1272/jnms.JNMS.2020_87-301
Svyatchenko, V. A., Nikonov, S. D., Mayorov, A. P., Gelfond, M. L., & Loktev, V. B. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information . January.
Sztandera, K., Gorzkiewicz, M., & Klajnert-Maculewicz, B. (2020). Nanocarriers in photodynamic therapy—in vitro and in vivo studies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 12(3), 1–24. https://doi.org/10.1002/wnan.1599
Taninaka, A., Kurokawa, H., Kamiyanagi, M., Ochiai, T., Arashida, Y., Takeuchi, O., Matsui, H., & Shigekawa, H. (2023). Polphylipoprotein-induced autophagy mechanism with high performance in photodynamic therapy. Communications Biology, 6(1), 1–11. https://doi.org/10.1038/s42003-023-05598-0
Wang, B., Zhou, L., Guo, Y., Guo, H., Zhong, Y., Huang, X., Ge, Y., Wang, Q., Chu, X., Jin, Y., Lan, K., Yang, M., & Qu, J. (2022). Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair. Bioactive Materials, 12(October 2021), 314–326. https://doi.org/10.1016/j.bioactmat.2021.10.032
Wang, D., Jin, J., Zhang, C., Ruan, C., Qin, Y., Li, D., Guan, M., & Lei, P. (2024). Carbomer Hydrogel Composed of Cu2O and Hematoporphyrin Monomethyl Ether Promotes the Healing of Infected Wounds. ACS Omega, 9(4), 4974–4985. https://doi.org/10.1021/acsomega.3c08718
Wang, F., Shi, Y., Ho, P. Y., Zhao, E., Kam, C., Zhang, Q., Zhao, X., Pan, Y., & Chen, S. (2023). An AIE-active bacterial inhibitor and photosensitizer for selective imaging, killing, and photodynamic inactivation of bacteria over mammalian cells. Bioengineering and Translational Medicine, 8(6), 1–12. https://doi.org/10.1002/btm2.10539
Wang, Y., Yao, H., Zu, Y., & Yin, W. (2022). Biodegradable MoOx@MB incorporated hydrogel as light-activated dressing for rapid and safe bacteria eradication and wound healing. RSC Advances, 12(15), 8862–8877. https://doi.org/10.1039/d2ra00963c
Wang, Z., Peng, H., Shi, W., Gan, L., Zhong, L., He, J., Xie, L., Wu, P., Zhao, Y., Deng, Z., Tang, H., & Huang, Y. (2021). Application of photodynamic therapy in cancer: Challenges and advancements. Biocell, 45(3), 489–500. https://doi.org/10.32604/BIOCELL.2021.014439
Wei, D., Hamblin, M. R., Wang, H., Fekrazad, R., Wang, C., & Wen, X. (2024). Rose Bengal diacetate-mediated antimicrobial photodynamic inactivation: potentiation by potassium iodide and acceleration of wound healing in MRSA-infected diabetic mice. BMC Microbiology, 24(1), 1–10. https://doi.org/10.1186/s12866-024-03401-6
Wei, X., Ni, J., Yuan, L., & Li, X. (2024). Hematoporphyrin derivative photodynamic therapy induces apoptosis and suppresses the migration of human esophageal squamous cell carcinoma cells by regulating the PI3K/AKT/mTOR signaling pathway. Oncology Letters, 27(1). https://doi.org/10.3892/ol.2023.14150
Xiao, F., Cao, B., Wang, C., Guo, X., Li, M., Xing, D., & Hu, X. (2019). Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. ACS Nano, 13(2), 1511–1525. https://doi.org/10.1021/acsnano.8b07251
Xiao, P., Shen, Z., Wang, D., Pan, Y., Li, Y., Gong, J., Wang, L., Wang, D., & Tang, B. Z. (2022). Precise Molecular Engineering of Type I Photosensitizers with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Killing of Multidrug-Resistant Bacteria. Advanced Science, 9(5), 1–11. https://doi.org/10.1002/advs.202104079
Xiao, R., Zheng, F., Kang, K., Xiao, L., Bi, A., Chen, Y., Zhou, Q., Feng, X., Chen, Z., Yin, H., Wang, W., Chen, Z., Cheng, X., & Zeng, W. (2023). Precise visualization and ROS-dependent photodynamic therapy of colorectal cancer with a novel mitochondrial viscosity photosensitive fluorescent probe. Biomaterials Research, 27(1), 1–12. https://doi.org/10.1186/s40824-023-00450-2
Xin, J., Yang, Z., Zhang, S., Sun, L., Wang, X., Tang, Y., Xiao, Y., Huang, H., & Li, W. (2024). Fast fabrication of “all-in-one” injectable hydrogels as antibiotic alternatives for enhanced bacterial inhibition and accelerating wound healing. In Journal of Nanobiotechnology (Vol. 22, Issue 1). BioMed Central. https://doi.org/10.1186/s12951-024-02657-4
Xiu, W., Wan, L., Yang, K., Li, X., Yuwen, L., Dong, H., Mou, Y., Yang, D., & Wang, L. (2022). Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-31479-x
Xu, X., Hu, Y., Zhang, L. P., Liu, B., Yang, Y., Tang, T., Tian, J., Peng, K., & Liu, T. (2020). Lactic-: Co -glycolic acid-coated methylene blue nanoparticles with enhanced antibacterial activity for efficient wound healing. RSC Advances, 10(21), 12304–12307. https://doi.org/10.1039/d0ra01034k
Xu, Y., Liu, S., Zhao, H., Li, Y., Cui, C., Chou, W., Zhao, Y., Yang, J., Qiu, H., Zeng, J., Chen, D., Wu, S., Tan, Y., Wang, Y., & Gu, Y. (2023). Ultrasonic irradiation enhanced the efficacy of antimicrobial photodynamic therapy against methicillin-resistant Staphylococcus aureus biofilm. Ultrasonics Sonochemistry, 97(April). https://doi.org/10.1016/j.ultsonch.2023.106423
Yaghobee, S., Pourhajibagher, M., Bahrami, R., & Isaabadi, M. (2024). Nano-emodin mediated photodynamic therapy for wound healing of donor site after free gingival graft: A parallel clinical trial. Photodiagnosis and Photodynamic Therapy, 45(September 2023), 103958. https://doi.org/10.1016/j.pdpdt.2023.103958
Yang, T., Tan, Y., Zhang, W., Yang, W., Luo, J., Chen, L., Liu, H., Yang, G., & Lei, X. (2020). Effects of ALA-PDT on the Healing of Mouse Skin Wounds Infected With Pseudomonas aeruginosa and Its Related Mechanisms. Frontiers in Cell and Developmental Biology, 8, 585132. https://doi.org/10.3389/fcell.2020.585132
Yang, Y., Wang, J., Huang, S., Li, M., Chen, J., Pei, D., Tang, Z., & Guo, B. (2024). Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing. National Science Review, 11(4). https://doi.org/10.1093/nsr/nwae044
Yang, Z., Hu, X., Zhou, L., He, Y., Zhang, X., Yang, J., Ju, Z., Liou, Y. C., Shen, H. M., Luo, G., Hamblin, M. R., He, W., & Yin, R. (2021). Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization. Burns and Trauma, 9, 1–12. https://doi.org/10.1093/burnst/tkab008
Zhai, W., Zhang, Y., Liu, M., Zhang, H., Zhang, J., & Li, C. (2019). Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angewandte Chemie - International Edition, 58(46), 16601–16609. https://doi.org/10.1002/anie.201907510
Zhang, F., Wen, C., Peng, Y., Hu, Z., Zheng, S., Chen, W., & Wen, L. (2023). Biomimetic lipid nanoparticles for homologous-targeting and enhanced photodynamic therapy against glioma. European Journal of Pharmaceutical Sciences, 190(August), 106574. https://doi.org/10.1016/j.ejps.2023.106574
Zhang, L., Hao, L., Huang, Y., Huang, H., Hu, J., & Bi, M. (2020). Photodiagnosis and Photodynamic Therapy Satisfactory response of a back carbuncle to 5-aminolevulinic acid ( ALA ) photodynamic therapy : A case report. Photodiagnosis and Photodynamic Therapy, 30(December 2019), 101618. https://doi.org/10.1016/j.pdpdt.2019.101618
Zhang, Y., Kang, J., Chen, X., Zhang, W., Zhang, X., Yu, W., & Yuan, W. E. (2023). Ag nanocomposite hydrogels with immune and regenerative microenvironment regulation promote scarless healing of infected wounds. Journal of Nanobiotechnology, 21(1), 1–17. https://doi.org/10.1186/s12951-023-02209-2
Zhao, Z. J., Xu, Z. P., Ma, Y. Y., Ma, J. D., & Hong, G. (2020). Photodynamic antimicrobial chemotherapy in mice with Pseudomonas aeruginosa-infected wounds. PLoS ONE, 15(9 September), 1–19. https://doi.org/10.1371/journal.pone.0237851
Zhao, Z., Ma, J., Wang, Y., Xu, Z., Zhao, L., Zhao, J., Hong, G., & Liu, T. (2021). Antimicrobial Photodynamic Therapy Combined With Antibiotic in the Treatment of Rats With Third-Degree Burns. Frontiers in Microbiology, 12(February), 1–14. https://doi.org/10.3389/fmicb.2021.622410
Zuhayri, H., Samarinova, A. A., Borisov, A. V, Guardado, D. A. L., Baalbaki, H., Krivova, N. A., & Kistenev, Y. V. (2023). Quantitative Assessment of Low-Dose Photodynamic Therapy Effects on Diabetic Wound Healing Using Raman Spectroscopy. In Pharmaceutics (Vol. 15, Issue 2). https://doi.org/10.3390/pharmaceutics15020595
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).