Multilevel Thresholding Segmentasi Citra Warna Menggunakan Logarithmic Decreasing Inertia Weight Particle Swarm Optimization

Murinto Murinto, Adhi Prahara, Erik Iman Heri Ujianto

Abstract


Permasalahan utama dari segmentasi citra warna adalah tidak semua metode segmentasi citra yang ada saat ini dapat digunakan secara langsung seperti halnya pada citra gray scale. Maka dari itu diperlukan suatu teknik yang tepat untuk melakukan segmentasi warna. Teknik yang digunakan dalam penelitian ini adalah teknik segmentasi multilevel thresholding dengan menggunakan suatu bobot inersia logarithm decreasing particle swarm optimization (LogPSO). Bobot inersia Nilai threshold optimal diperoleh dengan cara memaksimalkan fungsi objektif Otsu. Teknik yang diusulkan mengurangi waktu perhitungan untuk perhitungan threshold optimum didasarkan pada multilevel thresholding yang diujikan pada 8 citra warna standar. Suatu analisis perbandingan secara detail dengan bobot inersia lainnya yang didasarkan pada multilevel thresholding yakni constant particle swarm optimization (CPSO), menunjukkan hasil kinerja yang lebih baik pada metode yang diusulkan. Kinerja segmentasi citra warna dalam penelitian ini didasarkan pada peak signal to noise ratio (PSNR), mean, standar deviasi fitness, structural similarity index measure (SSIM), mean square of error (MSE) serta waktu perhitungannya. Algoritma LogPSO menunjukkan hasil yang lebih baik pada keseluruhan parameter tersebut kecuali pada waktu penghitungan. Algoritma LogPSO lebih lama waktu perhitungannya dibandingkan dengan CPSO.


Keywords


Citra Warna; CPSO; LogPSO; Segmentasi

References


Dhieb, M. and Frikha, M. (2016) ‘A multilevel thresholding algorithm for image segmentation based on particle swarm optimization’, Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA, 0(1), pp. 0–3.

Dilpreet, K. and Yadwinder, K. (2014) ‘Various Image Segmentation Techniques: A Review’, International Journal of Computer Science and Mobile Computing, 3(5), pp. 809–814.

Dorigo, M., Stutzle, T. and Birattari, M. (2006) ‘Ant Colony Optimization’, IEEE Computational Intelligence Magazine, (November 2006), pp. 28–39.

Duraisamy, P. S. and Kayalvizhi, R. (2010) ‘A New Multilevel Thresholding Method Using Swarm Intelligence Algorithm for Image Segmentation’, Journal of Intelligent Learning Systems and Applications, 02(03), pp. 126–138.

Eberhart, R. and Kennedy, J. (1995) ‘New optimizer using particle swarm theory’, Proceedings of the International Symposium on Micro Machine and Human Science, pp. 39–43.

Gao, Y. L., An, X. H. and Liu, J. M. (2008) ‘A particle swarm optimization algorithm with logarithm decreasing inertia weight and chaos mutation’, Proceedings - 2008 International Conference on Computational Intelligence and Security, CIS 2008, 1, pp. 61–65.

Guimin, C. et al. (2006) ‘Self-active inertia weight strategy in particle swarm optimization algorithm’, Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 1(2002), pp. 3686–3689.

Guruprasad, P. (2020) ‘Overview Of Different Thresholding Methods In Image Processing’, TEQIP Sponsored 3rd National Conference on ETACC, (June).

Li, H. R. and Gao, Y. L. (2009) ‘Particle swarm optimization algorithm with exponent decreasing inertia weight and stochastic mutation’, 2009 2nd International Conference on Information and Computing Science, ICIC 2009, 1(3), pp. 66–69.

Malik, R. F. et al. (2007) ‘New Particle Swarm Optimizer with Sigmoid Increasing Inertia Weight’, International Journal of Computer Science and Security. IJCSS, 1(1), pp. 35–44.

Murinto and Ismi, D. P. (2019) ‘Hyperspectral image segmentation using discriminant independent component analysis and swarm optimization approaches’, in IOP Conference Series: Materials Science and Engineering.

Otsu, N. (1979) ‘A Threshold Selection Method from Gray-Level Histograms’, IEEE TRANSACTIONS ON SYSTREMS, MAN, AND CYBERNETICS, SMC-9(1), pp. 62–66.

Pare, S. et al. (2017) ‘An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix’, Expert Systems with Applications, 87, pp. 335–362.

Sahoo, P. K., Soltani, S. and Wong, A. K. C. (1988) ‘A survey of thresholding techniques’, Computer Vision, Graphics and Image Processing, 41(2), pp. 233–260. d

Sathya, P. D. and Kayalvizhi, R. (2010) ‘Development of a New Optimal Multilevel Thresholding Using Improved Particle Swarm Optimization Algorithm for’, International Journal of Electronics, 2(1), pp. 63–67.

Shi, Y. and Eberhart, R. (1998) ‘Modified particle swarm optimizer’, Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, (February), pp. 69–73.

Storn, R. and Price, K. (1995) ‘Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces’, Technical Report, (TR-95-012), pp. 1–12.

Xin, J., Chen, G. and Hai, Y. (2009) ‘A particle swarm optimizer with multi-stage linearly-decreasing inertia weight’, Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, CSO 2009, 1, pp. 505–508.


Full Text: PDF

DOI: 10.30595/sainteks.v19i1.13295

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2686-0546