Kajian Teoritik Efek Pelarut pada Coumarin untuk Aplikasi Dye Sel Surya

Siti Zulaehah, Eqwar Saputra, Trio Nur Wibowo, Riri Jonuarti, Nadhratun Naiim Mobarak, Wahyu Tri Cahyanto

Abstract


Dye-sensitized solar cell (DSSC) merupakan salah satu piranti penting di mana teknologi paling umum digunakan untuk mentransfer energi matahari menjadi listrik, namun efisiensinya masih relatif rendah.  Pewarna coumarin dasar memiliki potensi yang cukup tinggi untuk digunakan  di DSSC dengan sifat yang  ramah lingkungan dan mudah produksi.  Adapun tujuan penelitian ini adalah mempelajari potensial coumarin sebagai zat warna pada piranti sel surya. Langkah dasar dalam memahami perilaku mikroskopis untuk mempelajari potensial dye ini, peneliti mempelajari struktur geometris, struktur elektronik dan optik dari dye coumarin dalam pelarut menggunakan metode kerapatan fungsional atau density functional theory (DFT) dan time dependent density functional theory (TD-DFT).  Hasil penelitian menunjukkan bahwa efek pelarut pada dye coumarin dapat menstabilkan struktur coumarin.   Dengan adanya  zat pelarut dapat meningkatkan gap energi orbital dari  HOMO-LUMO,  kekuatan osilator, dan memiliki efisiensi penyerapan cahaya (LHE) yang lebih tinggi, serta pergeseran spektrum penyerapan UV ke arah sinar tampak.  Hasil ini menunjukkan bahwa pelarut memiliki sifat yang lebih baik untuk aplikasi di DSSC pada coumarin tanpa modifikasi.


References


[1] Singh, S. S., & Shougaijam, B. (2022). Recent Development and Future Prospects of Rigid and Flexible Dye-Sensitized Solar Cell: A Review. Contemporary Trends in Semiconductor Devices, 85-109.

[2] O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737-740.

[3] Imahori, H., Umeyama, T., & Ito, S. (2009). Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Accounts of chemical research, 42(11), 1809-1818.

[4] De Angelis, F., Fantacci, S., Mosconi, E., Nazeeruddin, M. K., & Grätzel, M. (2011). Absorption spectra and excited state energy levels of the N719 dye on TiO2 in dye-sensitized solar cell models. The Journal of Physical Chemistry C, 115(17), 8825-8831.

[5] Prabavathy, N., Shalini, S., Balasundaraprabhu, R., Velauthapillai, D., Prasanna, S., & Muthukumarasamy, N. (2017). Enhancement in the photostability of natural dyes for dye‐sensitized solar cell (DSSC) applications: a review. International Journal of Energy Research, 41(10), 1372-1396.

[6] Maçaira, J., Andrade, L., & Mendes, A. (2013). Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 27, 334-349.

[7] Shalini, S., Prasanna, S., Mallick, T. K., & Senthilarasu, S. (2015). Review on natural dye sensitized solar cells: Operation, materials and methods. Renewable and Sustainable Energy Reviews, 51, 1306-1325.

[8] Gong, J., Sumathy, K., Qiao, Q., & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68, 234-246.

[9] Odobel, F., Pellegrin, Y., Gibson, E. A., Hagfeldt, A., Smeigh, A. L., & Hammarström, L. (2012). Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coordination Chemistry Reviews, 256(21-22), 2414-2423.

[10] Calogero, G., & Di Marco, G. (2008). Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 92(11), 1341-1346.

[11] Davies, K. (2004). Plant pigments and their manipulation. Blackwell publishing.

[12] Bourouina, A., & Rekhis, M. (2017). Structural and electronic study of iron-based dye sensitizers for solar cells using DFT/TDDFT. Journal of Molecular Modeling, 23(11), 1-9.

[13] Mishra, A., Fischer, M. K., & Bäuerle, P. (2009). Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition, 48(14), 2474-2499.

[14] Wang, Z. S., Cui, Y., Dan-oh, Y., Kasada, C., Shinpo, A., & Hara, K. (2008). Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells. The Journal of Physical Chemistry C, 112(43), 17011-17017.

[15] Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., ... & Arakawa, H. (2003). Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry, 27(5), 783-785.

[16] Bourgaud, F., Poutaraud, A., & Guckert, A. (1994). Extraction of coumarins from plant material (Leguminosae). Phytochemical Analysis, 5(3), 127-132.

[17] Vuai, S. A., Khalfan, M. S., & Babu, N. S. (2021). DFT and TD-DFT studies for optoelectronic properties of coumarin based donor-π-acceptor (D-π-A) dyes: applications in dye-sensitized solar cells (DSSCS). Heliyon, 7(11), e08339.

[18] Ahmed, S., Bora, S. R., Chutia, T., & Kalita, D. J. (2021). Structural modulation of phenothiazine and coumarin based derivatives for high performance dye sensitized solar cells: a theoretical study. Physical Chemistry Chemical Physics, 23(23), 13190-13203.

[19] Souilah, M., Hachi, M., Fitri, A., Benjelloun, A. T., El Khattabi, S., Benzakour, M., ... & Zgou, H. (2021). Coumarin-based D–π–A dyes for efficient DSSCs: DFT and TD-DFT study of the π-spacers influence on photovoltaic properties. Research on Chemical Intermediates, 47(2), 875-893.

[20] Hara, K., Wang, Z. S., Sato, T., Furube, A., Katoh, R., Sugihara, H., ... & Suga, S. (2005). Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. The Journal of Physical Chemistry B, 109(32), 15476-15482.

[21] Gross, A. E., Dobson, J. F., & Petersilka, M. (1996). Density functional theory of time-dependent phenomena. Density functional theory II, 81-172.

[22] G. Vignale and W. Kohn, in Electronic Density Functional Theory (Springer, 1998) pp. 199–216.

[23] Martsinovich, N., & Troisi, A. (2011). Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy & Environmental Science, 4(11), 4473-4495.

[24] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864.

[25] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133.

[26] Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 38(6), 3098.

[27] Perdew, J. P. (1986). Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 33(12), 8822.

[28] Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577.

[29] Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry program package. The Journal of chemical physics, 152(22), 224108.

[30] Grimme, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of computational chemistry, 27(15), 1787-1799.

[31] Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15), 154104.

[32] Grimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of computational chemistry, 32(7), 1456-1465.

[33] Whitten, J. L. (1973). Coulombic potential energy integrals and approximations. The Journal of Chemical Physics, 58(10), 4496-4501.

[34] Baerends, E. J., Ellis, D. E., & Ros, P. J. C. P. (1973). Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure. Chemical Physics, 2(1), 41-51.

[35] Dunlap, B. I., Connolly, J. W. D., & Sabin, J. R. (1979). On some approximations in applications of X α theory. The Journal of Chemical Physics, 71(8), 3396-3402.

[36] Cossi, M., & Barone, V. (2001). Time-dependent density functional theory for molecules in liquid solutions. The Journal of chemical physics, 115(10), 4708-4717.

[37] Kumar, P. S., Ghosh, G., Rout, S. K., & Paul, D. (2013). Synthesis and antimicrobial evaluation of some novel 4-hydroxy coumarin derivatives bearing azo moiety. Rasayan Journal of Chemistry, 6, 147-152.


Full Text: PDF

DOI: 10.30595/cerie.v2i2.14054

DOI (PDF): http://dx.doi.org/10.30595/cerie.v2i2.14054.g5029

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2774-8006