Studi Numerik Pengaruh Rasio Ld/D terhadap Thrust dan Kecepatan Fluida pada Ducted Propeller

Muhammad Ramadhani Suryolaksono, Eqwar Saputra, Janatin Nur Aripin

Abstract


Ducted propeller is an engineered propeller drive which aimed to enhance thrust force. Many ways can be done in purpose to enhance thrust force, such as geometry variation in term of Ld/D ratio. Ld/D ratio is a ratio between duct length and duct diameter. In this research, an analysis was conducted using numerical simulation. This research used two Ld/D ratio (0.4 and 0.5) and three propeller angular velocities as the variables (1000, 3000, and 5000 rpm). The result of this research showed that higher Ld/D ratio produced higher thrust force. At 5000 rpm the thrust fore increased 26.3% on duct with Ld/D ratio of 0.5. Moreover, higher propeller angular velocity produce higher fluid velocity at the ducted propeller outlet. The highest fluid velocity reached at 5000 rpm propeler angular velocity with the value of 9.8 and 10.8 m/s.

Keywords: ducted propeller; Ld/D ratio; numerical simulation; thrust force


References


[1] Oki Pratama, ‘Konservasi Perairan Sebagai Upaya menjaga Potensi Kelautan dan Perikanan Indonesia’. Accessed: May 05, 2023. [Online]. Available: https://kkp.go.id/djprl/artikel/21045-konservasi-perairan-sebagai-upaya-menjaga-potensi-kelautan-dan-perikanan-indonesia

[2] F. Ortolani, A. Capone, G. Dubbioso, F. Alves Pereira, A. Maiocchi, and F. Di Felice, ‘Propeller performance on a model ship in straight and steady drift motions from single blade loads and flow field measurements’, Ocean Engineering, vol. 197, Feb. 2020, doi: 10.1016/j.oceaneng.2019.106881.

[3] Y. C. Hsieh and D. M. Hai, ‘Computational study on the effect of the shape of ducts on the performance of the submarine propeller’, Advances in Mechanical Engineering, vol. 11, no. 8, pp. 1–10, 2019, doi: 10.1177/1687814019870902.

[4] M. Chen, J. Liu, Q. Si, Y. Liang, Z. Jin, and J. Yuan, ‘Investigation into the Hydrodynamic Noise Characteristics of Electric Ducted Propeller’, J Mar Sci Eng, vol. 10, no. 3, Mar. 2022, doi: 10.3390/jmse10030378.

[5] Y. Liu, Q. Gong, Y. Bian, and Q. Suo, ‘Effect of ducts on the hydrodynamic performance of marine propellers’, Engineering Computations (Swansea, Wales), vol. 39, no. 2, pp. 744–772, Feb. 2022, doi: 10.1108/EC-03-2021-0190.

[6] I. S. Arief, T. B. Musriyadi, and A. D. A. Je Mafera, ‘Analysis Effect of Duct Length– Nozzle Diameter Ratio and Tip Clearance Variation on the Performance of K-Series Propeller’, International Journal of Marine Engineering Innovation and Research, vol. 2, no. 1, 2017, doi: 10.12962/j25481479.v2i1.2527.

[7] S. Yilmaz, D. Erdem, and M. S. Kavsaoglu, ‘Performance of a ducted propeller designed for UAV applications at zero angle of attack flight: An experimental study’, Aerosp Sci Technol, vol. 45, pp. 376–386, 2015, doi: 10.1016/j.ast.2015.06.005.

[8] W. Yue, R. Wanlong, L. Gang, Z. Yuanming, and H. Zongrui, ‘The Numerical Analysis of Hydrodynamic Characteristics of Ducted Propeller by using SST k-ω Model’, IOP Conf Ser Mater Sci Eng, vol. 649, no. 1, pp. 1–7, 2019, doi: 10.1088/1757-899X/649/1/012025.

[9] B. Nopias, K. Muhajir, and T. Rusianto, ‘Pengaruh Gaya Dorong Propeler pada Engine Fora Terhadap Kecepatan Pesawat Model F2D Combat’, 2017. [Online]. Available: http://dle-tech.info/tag/pitch/

[10] F. Sihaloho, P. Manik, A. Wibawa Budi Santosa, and L. Perancangan Kapal Dibantu Komputer, ‘Analisa Nilai Thrust Ducted Propaller Dengan Variasi Diameter, Panjang & Tipe Kort Nozzle Menggunakan Metode CFD’, Jurnal Teknik Perkapalan, vol. 8, no. 3, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/naval

[11] D. Lakshmanan et al., ‘Computational fluid dynamic studies on configured propeller blades integrated with E62 airfoil’, International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/s12008-023-01273-0.

[12] A. D. Sapto and M. F. Noviandi, ‘Analisis Thrust dan Torque Berdasarkan Variasi Putaran dan Jumlah Blade Propeller Air pada Unmanned Aerial Vehicle (UAV) AMPHI-FLY EVO 1.0’, Jurnal Teknik Mesin, vol. 10, no. 2, p. 84, 2021.

[13] E. Kuantama and R. Tarca, ‘Quadcopter thrust optimization with ducted-propeller’, in MATEC Web of Conferences, EDP Sciences, Oct. 2017. doi: 10.1051/matecconf/201712601002.


Full Text: PDF

DOI: 10.30595/cerie.v4i1.21125

DOI (PDF): http://dx.doi.org/10.30595/cerie.v4i1.21125.g6632

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2774-8006