Fabrikasi dan Analisis Struktur Sel Surya Amorf Menggunakan Sistem PECVD

Soni Prayogi, Ayunis Ayunis, Yoyok Cahyono, Darminto Darminto


Pada studi ini, telah dilakukkan pembuatan lapisan sel surya silikon amorf terhidrogenasi (a-Si:H) tipe p dengan menggunakan sistem PECVD pada subtrat kaca ITO. Deposisi yang dilakukan selama 30 menit dengan daya RF 3-Watt dan temperatur 2700C. Fabrikasi sel surya amorf menggunakanmetode ekperimen dengan mengalirkan gas silan (SiH4) 20 sccm dengan variasi laju gas Hidrogen (H2) dari 30 sccm sampai 70 sccm dan laju gas Boron (B2H6) 2 sccm dan 4 sccm. Hasil fabrikasi sel surya amorf mendapatkan ketebalan lapisan yang diukur dengan spektrometer (NanoCalc-2000) sebesar 302,8-324,0 nm. Dengan menggunakan pengukuran four-point probe didapatkan konduktivitas gelap 3,34 x 10-3 S/cm dan konduktivitas terang didapatkan 3,91 x 10-3 S/cm. Serta, hasil pengukuran menggunakan UV-VIS mendapatkan energi gap sebesar 1,7-1,8 eV. Fabrikasi lapisan sel surya amorf ini diharapkan dapat meningkatkan efisiensi sel surya berbasis a-Si: H.


PECVD; Konduktivitas; Energi Gap; Sel Surya


Beyer, W. (2003). Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon. Solar Energy Materials and Solar Cells, 78(1), 235–267.

Bhatia, S. C. (2014). 3—Solar devices. In S. C. Bhatia (Ed.), Advanced Renewable Energy Systems (pp. 68–93). Woodhead Publishing India.

Bhattacharya, S., & John, S. (2019). Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration. Scientific Reports, 9(1), Article 1.

Chittick, R. C., Alexander, J. H., & Sterling, H. F. (1969). The Preparation and Properties of Amorphous Silicon. Journal of The Electrochemical Society, 116(1), 77.

Das, D., & Samanta, S. (2020). Advanced nanocrystallinity with widened optical gap realized via microstructural control in P-doped silicon oxide thin films used as window layer in nc-Si solar cells. Materials Chemistry and Physics, 243, 122628.

Delyannis, E., & Belessiotis, V. (2013). Solar Water Desalination☆. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.

Despotou, E. (2012). 1.10—Vision for Photovoltaics in the Future. In A. Sayigh (Ed.), Comprehensive Renewable Energy (pp. 179–198). Elsevier.

Dhass, A. D., Prakash, Y., & Ramya, K. C. (2020). Effect of temperature on internal parameters of solar cell. Materials Today: Proceedings, 33, 732–735.

Duan, W., Qiu, Y., Zhang, L., Yu, J., Bian, J., & Liu, Z. (2014). Influence of precursor a-Si:H dehydrogenation on the aluminum induced crystallization process. Materials Chemistry and Physics, 146(1), 141–145.

Fonash, S. J. (2010). Chapter Three—Structures, Materials, and Scale. In S. J. Fonash (Ed.), Solar Cell Device Physics (Second Edition) (pp. 67–120). Academic Press.

Ghosh, T. K., & Prelas, M. A. (2011). Solar Energy. In T. K. Ghosh & M. A. Prelas (Eds.), Energy Resources and Systems: Volume 2: Renewable Resources (pp. 79–156). Springer Netherlands.

Guha, S. (2001). Amorphous Semiconductor Solar Cells. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (pp. 259–263). Elsevier.

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022a). The Effects of Dopant Concentration on the Performances of the a-SiOx:H(p)/a-Si:H(i1)/a-Si:H(i2)/µc-Si:H(n) Heterojunction Solar Cell. International Journal of Renewable Energy Development, 11(1), 173–181.

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022b). The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell’s performances: A numerical study. Cogent Engineering, 9(1), 2110726.

Illiberi, A., Kudlacek, P., Smets, A. H. M., Creatore, M., & van de Sanden, M. C. M. (2011). Effect of ion bombardment on the a-Si:H based surface passivation of c-Si surfaces. Applied Physics Letters, 98(24), 242115.

Irvine, S. (2007). Solar Cells and Photovoltaics. In S. Kasap & P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials (pp. 1095–1106). Springer US.

Jiang, H., Shang, T., Xian, H., Sun, B., Zhang, Q., Yu, Q., Bai, H., Gu, L., & Wang, W. (2021). Structures and Functional Properties of Amorphous Alloys. Small Structures, 2(2), 2000057.

Kasap, S., Koughia, C., Singh, J., Ruda, H., & OʼLeary, S. (2007). Optical Properties of Electronic Materials: Fundamentals and Characterization. In S. Kasap & P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials (pp. 47–77). Springer US.

Krenckel, P., Hayama, Y., Schindler, F., Trötschler, T., Riepe, S., & Usami, N. (2021). Propagation of Crystal Defects during Directional Solidification of Silicon via Induction of Functional Defects. Crystals, 11(2), Article 2.

Lin, G.-S., Li, C.-Y., Huang, K.-C., & Houng, M.-P. (2015). Using chemical wet-etching methods of textured AZO films on a-Si:H solar cells for efficient light trapping. Materials Chemistry and Physics, 160, 264–270.

Liu, W., Shi, J., Zhang, L., Han, A., Huang, S., Li, X., Peng, J., Yang, Y., Gao, Y., Yu, J., Jiang, K., Yang, X., Li, Z., Zhao, W., Du, J., Song, X., Yin, J., Wang, J., Yu, Y., … Liu, Z. (2022). Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nature Energy, 7(5), Article 5.

Malik, A. Q., Hah, C. C., Khwang, C. S., Ming, L. C., & Sheng, T. K. (2006). Characterisation of multicrystalline solar cells. ASEAN Journal on Science and Technology for Development, 23(1–2), Article 1–2.

Meng, F., Shen, L., Shi, J., Zhang, L., Liu, J., Liu, Y., & Liu, Z. (2015). Role of the buffer at the interface of intrinsic a-Si:H and p-type a-Si:H on amorphous/crystalline silicon heterojunction solar cells. Applied Physics Letters, 107(22), 223901.

Morigaki, K., & Ogihara, C. (2007). Amorphous Semiconductors: Structure, Optical, and Electrical Properties. In S. Kasap & P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials (pp. 565–580). Springer US.

Phillips, L. (2019). 9—Solar energy. In T. M. Letcher (Ed.), Managing Global Warming (pp. 317–332). Academic Press.

Prayogi, S. (2022a). Studi Struktur Elektronik Sel Surya a-Si: H Lapisan Jamak Menggunakan Spektroskopi Elipsometri [Doctoral, Institut Teknologi Sepuluh Nopember].

Prayogi, S. (2022b). Silikon Kristal vs Silikon Amorf: Perbedaan Struktural dalam Aplikasi Fotovoltaik. Jurnal Teknik AMATA, 3(2), Article 2.

Prayogi, S. (2022c). Analisis Efisisensi Sel Surya a-Si:H Berdasarkan Penyusun Lapisan Aktif. Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 6(2).

Prayogi, S., Asih, R., Priyanto, B., Baqiya, M. A., Naradipa, M. A., Cahyono, Y., Darminto, & Rusydi, A. (2022). Observation of resonant exciton and correlated plasmon yielding correlated plexciton in amorphous silicon with various hydrogen content. Scientific Reports, 12(1), Article 1.

Prayogi, S., Ayunis, Kresna, Cahyono, Y., Akidah, & Darminto. (2017). Analysis of thin layer optical properties of A-Si:H P-Type doping CH4 and P-Type without CH4 is deposited PECVD systems. Journal of Physics: Conference Series, 853(1), 012032.

Prayogi, S., Baqiya, M. A., Cahyono, Y., & Darminto. (2019). Optical Transmission of p-Type a-Si:H Thin Film Deposited by PECVD on ITO-Coated Glass. Materials Science Forum, 966, 72–76.

Prayogi, S., Cahyono, Y., & Darminto. (2021). Fabrication of solar cells based on a-Si: H layer of intrinsic double (P-ix-iy-N) with PECVD and Efficiency analysis. Journal of Physics: Conference Series, 1951(1), 012015.

Prayogi, S., Cahyono, Y., & Darminto, D. (2022a). Electronic structure analysis of a-Si: H p-i1-i2-n solar cells using ellipsometry spectroscopy. Optical and Quantum Electronics, 54(11), 732.

Prayogi, S., Cahyono, Y., & Darminto, D. (2022b). Hydrogenated Amorphous Silicon Density of State Analyzed by Dielectric Function Model Derived from Ellipsometric Spectroscopy. JPSE (Journal of Physical Science and Engineering), 7(2).

Prayogi, S., Cahyono, Y., Hamdani, D., & Darminto. (2022). Effect of active layer thickness on the performance of amorphous hydrogenated silicon solar cells. Engineering and Applied Science Research, 49(2).

Prior, K. A. (2005). SEMICONDUCTOR PHYSICS | Impurities and Defects. In R. D. Guenther (Ed.), Encyclopedia of Modern Optics (pp. 442–450). Elsevier.

Rozati, S. M., & Ziabari, S. A. M. (2022). A review of various single layer, bilayer, and multilayer TCO materials and their applications. Materials Chemistry and Physics, 292, 126789.

Schulze, T. F., Beushausen, H. N., Leendertz, C., Dobrich, A., Hannappel, T., Korte, L., & Rech, B. (2010). Impact of a-Si:H structural properties on the annealing behavior of a-Si:H/c-Si heterostructures used as precursors for high-efficiency solar cells. MRS Online Proceedings Library, 1268(1), 107.

Singh, J., Kaur, P., Kaur, P., Kumar, V., Al-Buriahi, M. S., Alfryyan, N., Alrowaili, Z. A., & Singh, T. (2022). Optical and radiation shielding features for some phospho-silicate glasses. Optik, 261, 169140.

Sundaram, S., Benson, D., & Mallick, T. K. (2016). Chapter 2—Overview of the PV Industry and Different Technologies. In S. Sundaram, D. Benson, & T. K. Mallick (Eds.), Solar Photovoltaic Technology Production (pp. 7–22). Academic Press.

Tuttle, B. R. (2018). Dangling bond defects in SiC: An ab initio study. Physical Review B, 97(4), 045203.

Vora, A. (2015). Increasing Solar Energy Conversion Efficiency in Thin Film Hydrogenated Amorphous Silicon Solar Cells with Patterned Plasmonic Silver Nano-Disk Array. Dissertations, Master’s Theses and Master’s Reports.

Wang, Q., Zhou, Y., Guo, W., Yang, Y., Shang, J., Chen, H., Mao, H., Zhu, T., Zhou, Y., & Liu, F. (2021). P-type c-Si/SnO2/Mg heterojunction solar cells with an induced inversion layer. Applied Physics Letters, 119(26), 263502.

Wang, S.-H., Chang, H.-E., Lee, C.-C., Fuh, Y.-K., & Li, T. T. (2020). Evolution of a-Si:H to nc-Si:H transition of hydrogenated silicon films deposited by trichlorosilane using principle component analysis of optical emission spectroscopy. Materials Chemistry and Physics, 240, 122186.

Welser, R. E., Polly, S. J., Kacharia, M., Fedorenko, A., Sood, A. K., & Hubbard, S. M. (2019). Design and Demonstration of High-Efficiency Quantum Well Solar Cells Employing Thin Strained Superlattices. Scientific Reports, 9(1), Article 1.

Wen, X., Chen, C., Lu, S., Li, K., Kondrotas, R., Zhao, Y., Chen, W., Gao, L., Wang, C., Zhang, J., Niu, G., & Tang, J. (2018). Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Communications, 9(1), Article 1.

Xu, Y., & Yan, X.-T. (Eds.). (2010). Thermodynamics and Kinetics of Chemical Vapour Deposition. In Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials (pp. 129–164). Springer.

Zhang, Y., Xie, L., Li, S., & Hu, Z. (2022). Fabrication of multi-purposed supercapacitors based on N-doped porous carbon framework. Results in Chemistry, 4, 100479.

Full Text: PDF

DOI: 10.30595/jrst.v7i2.16874

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2549-9750