Implementation of Principal Component Analysis and Learning Vector Quantization for Classification of Food Nutrition Status

Jasman Pardede, Hilwa Athifah

Abstract


Balanced nutrition is very good in the process of child development. During the COVID-19 pandemic, consuming a balanced nutritious diet can keep a child's immune system from transmitting the virus. In determining the nutritional content of children's food during the pandemic, a classification of the nutritional content of children's food is carried out by applying the principal component analysis (PCA) dimension reduction method and the learning vector quantization (LVQ) classification method. The data used in this study amounted to 1168 data with 25 indicators of food nutrients. From the tests that have been carried out, the combination of the PCA-LVQ method produces an average accuracy of 58% with the highest accuracy of 60%. In addition, this study also compares the performance of the PCA dimension reduction method, independent component analysis (ICA) and factor analysis (FA) on the LVQ classification process. The final result of testing the three methods is that the FA method takes the fastest time, which is 4.10434 seconds and the PCA method produces the highest accuracy, which is 58.2%

Keywords


food nutrition, covid-19 pandemic, classification, principal component analysis, learning vector quantization

References


[1] Y. I. Ayseli, N. Aytekin, D. Buyukkayhan, I. Aslan, and M. T. Ayseli, “Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals,” Trends Food Sci. Technol., vol. 105, no. September, pp. 186–199, 2020, doi: 10.1016/j.tifs.2020.09.001.

[2] Kemenkes, “Final-Panduan-Gizi-Seimbang-Pada-Masa-Covid-19-1.Pdf,” Panduan Gizi Seimbang Pada Masa Pandemi COVID-19. p. 31, 2020.

[3] E. Budianita and W. Prijodiprodjo, “Penerapan Learning Vector Quantization (LVQ) untuk Klasifikasi Status Gizi Anak,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 7, no. 2, p. 155, 2013, doi: 10.22146/ijccs.3354.

[4] R. Harimurti and R. Rahmawati, “RANCANG BANGUN APLIKASI PEMENUHAN GIZI BAGI IBU HAMIL MENGGUNAKAN LOGIKA FUZZY TSUKAMOTO,” UNESA, pp. 9–17, 2013.

[5] E. T. Lestari, “PENERAPAN ALGORITMA NAIVE BAYES CLASSIFIER DAN K-NEAREST NEIGHBOR UNTUK KLASIFIKASI STATUS GIZI OBESITAS ANAK DISABILITAS,” 2019, doi: 10.31227/osf.io/n4f68.

[6] W. Dhuhita, “Clustering Menggunakan Metode K-Mean Untuk Menentukan Status Gizi Balita,” J. Inform. Darmajaya, vol. 15, no. 2, pp. 160–174, 2015.

[7] G. Rahayu and M. Mustakim, “Principal Component Analysis Untuk Dimensi Reduksi Data Clustering Sebagai Pemetaan Persentase Sertifikasi Guru Di Indonesia,” Semin. Nas. Teknol. Inf. Komun. dan Ind., vol. 0, no. 0, pp. 201–208, 2017, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/3265.

[8] R. P. Furi, M. Si, and D. Saepudin, “Prediksi Financial Time Series Menggunakan Independent Component Analysis dan Support Vector Regression Studi Kasus : IHSG dan JII,” ISSN 2355-9365 e-Proceeding Eng. , vol. 2, no. 2, pp. 1–10, 2015.

[9] R. S. Nasution, “Analisis Faktor dengan Principal Component Analysis dalam Faktor-Faktor yang Memengaruhi Pemberian Makanan Tambahan pada Bayi Usia 0-6 Bulan di Kelurahan Kisaran Timur Kecamatan Kota Kisaran Timur Kabupaten Asahan Tahun 2018,” Univ. Sumatera Utara, 2018.

[10] N. Savanti, W. Gotami, and R. K. Dewi, “Peringkasan Teks Otomatis Secara Ekstraktif Pada Artikel Berita Kesehatan Berbahasa Indonesia Dengan Menggunakan Metode Latent Semantic Analysis,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2821–2828, 2018.

[11] Y. Yudihartanti, “Analisa Korelasi Mata Kuliah Penelitian Dengan Tugas Akhir Menggunakan Model Product Moment,” Progresif J. Ilm. Komput., vol. 13, no. 2, pp. 1691–1696, 2018.

[12] H. M. Nawawi, S. Rahayu, M. J. Shidiq, and J. J. Purnama, “Algoritma C4.5 Untuk Memprediksi Pengambilan Keputusan Memilih Deposito Berjangka,” J. Techno Nuasa Mandiri, vol. 16, no. 1, pp. 65–72, 2019.

[13] R. Susetyoko and E. Purwantini, “Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil,” vol. 2010, no. Ies, pp. 978–979, 2010.

[14] M. Kaden, M. Lange, D. Nebel, M. Riedel, T. Geweniger, and T. Villmann, “Aspects in classification learning - Review of recent developments in learning vector quantization,” Found. Comput. Decis. Sci., vol. 39, no. 2, pp. 79–105, 2014, doi: 10.2478/fcds-2014-0006.

[15] E. Budianita and Novriyanto, “Klasifikasi Status Gizi Balita Berdasarkan Indikator Antropometri Berat Badan Menurut Umur Menggunakan Learning Vector Quantization,” (Seminar Nas. Teknol. Informasi, Komun. dan Ind. SNTIK, no. November, pp. 213–220, 2015.


Full Text: PDF

DOI: 10.30595/juita.v10i1.11104

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2579-8901