Sentiment Analysis of the Convict Assimilation Program on Handling Covid-19

Authors

  • Aniq Noviciatie Ulfah STMIK Amik Riau
  • M Khairul Anam STMIK Amik Riau
  • Novi Yona Sidratul Munti <span lang="EN-AU">Pahlawan Tuanku Tambusai University</span>
  • Saleh Yaakub <span lang="EN-AU">Muhammdiyah Jambi University</span>
  • Muhammad Bambang Firdaus Mulawarman University

DOI:

https://doi.org/10.30595/juita.v10i2.12308

Keywords:

Covid-19, Sentiment Analysis, Support Vector Machine, RBF, Polynomial

Abstract

Coronavirus Disease-19 (Covid-19) is an infectious disease caused by the SARS-CoV-2 virus. The rapid spread of this disease has affected 216 other countries and regions, including Indonesia. In minimizing the spread and increasing losses, it is necessary to have several policies made by the Indonesian government in dealing with this. One of the policies taken by the government is the Convict Assimilation Program to prevent the spread of the virus in prisons. The Prisoner Assimilation Program fosters inmates by integrating prisoners into social life. Many media reported on the assimilation program in various media, including news portals, so that it became a forum for the public to express their opinions. News portals can be a source for getting public opinion. Therefore, sentiment analysis can be done to determine the sentiment of any existing public opinion. In this study, the analysis was carried out by applying one of the data mining methods, namely the Support Vector Machine, with positive, negative, and neutral sentiment labeling. The data used is audience comments in Indonesian with a dataset of 404 comments and then resampled so that the number of data becomes 669. The analysis uses the kernel Radial Basis Function (RBF), RBF with Grid Search, Polynomials, and Polynomials with grid search. Kernel RBF and Kernel Polynomial with Grid Search comparing test and training data 80%:20% with the highest accuracy of 95%.

Author Biographies

Aniq Noviciatie Ulfah, STMIK Amik Riau

Informatics Engineering

M Khairul Anam, STMIK Amik Riau

Information Technology

Novi Yona Sidratul Munti, <span lang="EN-AU">Pahlawan Tuanku Tambusai University</span>

Informatics Engineering

Saleh Yaakub, <span lang="EN-AU">Muhammdiyah Jambi University</span>

Information System

Muhammad Bambang Firdaus, Mulawarman University

Informatics

References

[1] Presiden Republik Indonesia, Undang-undang Repiblik Indonesia Nomor: 12 Tahun 1995 Tentang Pemasyarakatan. Indonesia: The Ministry of Law and Human Rights is an Indonesian ministry that administers laws and human rights., 1995.

[2] A. Sanusi, “Evaluasi Pelaksanaan Pembinaan Narapidana di Lembaga Pemasyarakatan Terbuka,” J. Ilm. Kebijak. Huk., vol. 13, no. 2, p. 123, 2019, doi: 10.30641/kebijakan.2019.v13.123-138.

[3] D. R. Putri, Johari, and Husni, “Kebijakan Asimilasi Terhadap Narapidana Dimasa Pandemi COVID-19,” J. Ilm. Mhs. Fak. Huk. Univ. Malikussaleh, vol. 2, no. 3, pp. 138–145, 2021, doi: 10.29103/jimfh.v4i2.4450.

[4] N. Y. I. Alfons, D. J. A. Hehanussa, and L. Lokollo, “Aspek Yuridis Pemberian Remisi Terhadap Narapidana Di Masa Pandemi COVID-19,” TATOHI J. Ilmu Huk., vol. 1, no. 4, pp. 337–345, 2021, [Online]. Available: https://fhukum.unpatti.ac.id/jurnal/tatohi/article/view/610.

[5] T. Alam and S. Qamar, “Coronavirus Disease (COVID-19): Reviews, Applications, and Current Status,” J. Inform. Univ. Pamulang, vol. 5, no. 3, p. 213, 2020, doi: 10.32493/informatika.v5i3.6563.

[6] N. H. Nasution et al., “Gambaran Pengetahuan Masyarakat Tentang Pencegahan Covid-19 Kecamatan Padangsidimpuan Batunadua, Kota Padangsidimpuan,” J. Biomedika dan Kesehat., vol. 4, no. 2, pp. 47–49, 2021, doi: 10.5193/health.v6i1.419.

[7] A. Syauqi, “Jalan Panjang COVID19 (sebuah refleksi dikala wabah merajalela berdampak pada perekonomian),” JKUBS, vol. 1, no. 1, pp. 1–19, 2020.

[8] S. Marthaningtiyas, “IMPLEMENTASI KEBIJAKAN ASIMILASI NARAPIDANA DI TENGAH PANDEMI COVID-19,” SUPREMASI J. Huk., vol. 3, no. 2, pp. 51–65, 2020, doi: 10.36441/supremasi.v3i2.130.

[9] A. N. Ulfah and M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, pp. 1–10, 2020, doi: 10.35957/jatisi.v7i1.196.

[10] E. S. Romaito, M. K. Anam, Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma SVM Dan NBC Dalam Analisa Sentimen Pilkada Pada Twitter,” CSRID J., vol. 13, no. 3, pp. 169–179, 2021, doi: 10.22303/csrid.13.3.2021.169-179.

[11] P. H. Prastyo, I. Ardiyanto, and R. Hidayat, “A Combination of Query Expansion Ranking and GA-SVM for Improving Indonesian Sentiment Classification Performance,” in Procedia CIRP, 2021, vol. 189, pp. 108–115, doi: 10.1016/j.procs.2021.05.074.

[12] E. Tyagi and A. K. Sharma, “Sentiment Analysis of Product Reviews using Support Vector Machine Learning Algorithm,” Indian J. Sci. Technol., vol. 10, no. 35, pp. 1–9, 2017, doi: 10.17485/ijst/2017/v10i35/118965.

[13] R. Maulana, P. A. Rahayuningsih, W. Irmayani, D. Saputra, and W. E. Jayanti, “Improved Accuracy of Sentiment Analysis Movie Review Using Support Vector Machine Based Information Gain,” in Journal of Physics: Conference Series, 2020, vol. 1641, no. 1, doi: 10.1088/1742-6596/1641/1/012060.

[14] V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020, doi: 10.22146/jnteti.v9i2.102.

[15] F. F. Irfani, M. Triyanto, A. D. Hartanto, and Kusnawi, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, pp. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.

[16] A. Veluchamy, H. Nguyen, M. L. Diop, and R. Iqbal, “Comparative Study of Sentiment Analysis with Product Reviews Using Machine Learning and Lexicon-Based Approaches,” SMU Data Sci. Rev., vol. 1, no. 4, pp. 1–22, 2018, [Online]. Available: https://scholar.smu.edu/cgi/viewcontent.cgi?article=1051&context=datasciencereview.

[17] A. N. Sutranggono, “KLASIFIKASI EMOSI PADA CUITAN DI TWITTER DENGAN PRINCIPAL COMPONENT ANALYSIS DAN SUPPORT VECTOR MACHINE,” J. Ilm. Mat., vol. 10, no. 1, pp. 13–20, 2022, doi: 10.26740/mathunesa.v10n1.p13-20.

[18] I. Etikan, “Comparison of Convenience Sampling and Purposive Sampling,” Am. J. Theor. Appl. Stat., vol. 5, no. 1, p. 1, 2016, doi: 10.11648/j.ajtas.20160501.11.

[19] F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 2, pp. 247–253, 2020, doi: 10.32736/sisfokom.v9i2.903.

[20] M. K. Anam, M. I. Mahendra, W. Agustin, Rahmaddeni, and Nurjayadi, “Framework for Analyzing Netizen Opinions on BPJS Using Sentiment Analysis and Social Network Analysis (SNA),” Intensif, vol. 6, no. 1, pp. 2549–6824, 2022, doi: 10.29407/intensif.v6i1.15870.

[21] Z. U. Siregar, R. R. A. Siregar, and R. Arianto, “Klasifikasi Sentiment Analysis Pada Komentar Peserta Diklat Menggunakan Metode K-Nearest Neighbor,” Kilat, vol. 8, no. 1, pp. 81–92, 2019, doi: 10.33322/kilat.v8i1.421.

[22] D. Rustiana and N. Rahayu, “Analisis Sentimen Pasar Otomotif Mobil: Tweet Twitter Menggunakan Naïve Bayes,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 1, pp. 113–120, 2017, doi: 10.24176/simet.v8i1.841.

[23] H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” Inf. Syst. Dev., vol. 5, no. 2, pp. 7–13, 2020.

[24] R. Julianto, E. D. Bintari, and Indrianti, “Analisis Sentimen Layanan Provider Telepon Seluler pada Twitter menggunakan Metode Naïve Bayesian Classification,” J. Big Data Anal. Artif. Intell., vol. 3, no. 1, 2017.

[25] F. O. Putri, Indriati, and R. C. Wihandika, “Analisis Sentimen pada Ulasan Pengguna MRT Jakarta Menggunakan Metode Neighbor-Weighted K-Nearest Neighbor dengan Seleksi Fitur Information Gain,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 7, pp. 2195–2203, 2020.

[26] R. Dehghani, H. Torabi Poudeh, H. Younesi, and B. Shahinejad, “Forecasting Daily River Flow Using an Artificial Flora–Support Vector Machine Hybrid Modeling Approach (Case Study: Karkheh Catchment, Iran),” Air, Soil Water Res., vol. 13, 2020, doi: 10.1177/1178622120969659.

[27] H. C. S. Ningrum, “Perbandingan Metode Support Vector Machine (SVM) Linear, Radial Basis Function (RBF), dan Polinomial Kernel dalam Klasifikasi Bidang Studi Lanjut Pilihan Alumni UII,” Stat. UII, 2018.

[28] N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (Svm,” J. Gaussian, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.v9i3.28932.

[29] I. Taufik and S. A. Pamungkas, “ANALISIS SENTIMEN TERHADAP TOKOH PUBLIK MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” J. “LOG!K@,” vol. 8, no. 1, pp. 69–79, 2018.

[30] R. Indraswari, A. Z. Arifin, and D. Herumurti, “Rbf Kernel Optimization Method With Particle Swarm Optimization On Svm Using The Analysis Of Input Data’s Movement,” J. Ilmu Komput. dan Inf., vol. 10, no. 1, pp. 36–42, 2017, doi: 10.21609/jiki.v10i1.410.

[31] R. Mukarramah, D. Atmajaya, and L. B. Ilmawan, “Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter,” Ilk. J. Ilm., vol. 13, no. 2, pp. 168–174, 2021, doi: 10.33096/ilkom.v13i2.851.168-174.

Downloads

Published

2022-11-14

How to Cite

Ulfah, A. N., Anam, M. K., Sidratul Munti, N. Y., Yaakub, S., & Firdaus, M. B. (2022). Sentiment Analysis of the Convict Assimilation Program on Handling Covid-19. JUITA: Jurnal Informatika, 10(2), 209–215. https://doi.org/10.30595/juita.v10i2.12308

Similar Articles

> >> 

You may also start an advanced similarity search for this article.