Comparison of Classification Methods on Twitter Sentiment Analysis of PDAM Tugu Tirta Kota Malang
Abstract
Keywords
References
Bioinformatics), 2012, vol. 7649 LNCS, no. PART 1, pp. 508–524. doi: 10.1007/978-3-642-35176-1_32.
[20] D. Duei Putri, G. Forda Nama, W. Eko Sulistiono Jurusan Teknik Elektro Universitas Lampung, B. Lampung Jl Sumantri Brojonegoro No, and B. Lampung, ‘Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier’, 2022.
[21] D. Rizki Aditya, E. Supriyati, and T. Listyorini, ‘ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP ROKOK ELEKTRIK (VAPE) DI INDONESIA MENGGUNAKAN METODE NAÏVE BAYES’.
[22] N. Sucahyo et al., ‘SWADHARMA (JRIS) ANALISIS SENTIMEN MASYARAKAT TERHADAP UU CIPTA KERJA PADA MEDIA SOSIAL TWITTER’.
[23] A. Kustanto, ‘DINAMIKA PERTUMBUHAN PENDUDUK DAN KUALITAS AIR DI INDONESIA’, JIEP, vol. 20, no. 1, 2020.
[24] D. N. Fitriana and Y. Sibaroni, ‘ARJUNA) Managed by Ministry of Research, Technology, and Higher Education’, Accredited by National Journal Accreditation, vol. 4, no. 2, pp. 846–853, 2020.
[25] O. F. Prihono and P. K. Sari, ‘Comparison Analysis Of Social Influence Marketing For Mobile Payment Using Support Vector Machine’, Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 367–374, Oct. 2019, doi: 10.22219/kinetik.v4i4.921.
[26] F. Alzami, E. D. Udayanti, D. P. Prabowo, and R. A. Megantara, ‘Document Preprocessing with TF-IDF to Improve the Polarity Classification Performance of Unstructured Sentiment Analysis’, Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 235–242, Aug. 2020, doi: 10.22219/kinetik.v5i3.1066.
[27] S. Cahyaningtyas, D. Hatta Fudholi, and A. Fathan Hidayatullah, ‘Deep Learning for Aspect-Based Sentiment Analysis on Indonesian Hotels Reviews’, Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Aug. 2021, doi: 10.22219/kinetik.v6i3.1300.
[28] M. A. Suprayogi and R. A. Supono, “Klasifikasi Helpdesk Menggunakan Metode K-Nearest Neighbor dan TF-ABS,” Techno.Com, vol. 20, no. 4, pp. 508–517, 2021, doi: 10.33633/tc.v20i4.5094.
DOI: 10.30595/juita.v11i1.15485
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN: 2579-8901
- Visitor Stats
View JUITA Stats