Implementation of Particle Swarm Optimization on Sentiment Analysis of Cyberbullying using Random Forest

Helma Herlinda, Muhammad Itqan Mazdadi, Muliadi Muliadi, Dwi Kartini, Irwan Budiman

Abstract


Social media has exerted a significant influence on the lives of the majority of individuals in the contemporary era. It not only enables communication among people within specific environments but also facilitates user connectivity in the virtual realm. Instagram is a social media platform that plays a pivotal role in the sharing of information and fostering communication among its users through the medium of photos and videos, which can be commented on by other users. The utilization of Instagram is consistently growing each year, thereby potentially yielding both positive and negative consequences. One prevalent negative consequence that frequently arises is cyberbullying. Conducting sentiment analysis on cyberbullying data can provide insights into the effectiveness of the employed methodology. This research was conducted as an experimental research, aiming to compare the performance of Random Forest and Random Forest after applying the Particle Swarm Optimization feature selection technique on three distinct data split compositions, namely 70:30, 80:20, and 90:10. The evaluation results indicate that the highest accuracy scores were achieved in the 90:10 data split configuration. Specifically, the Random Forest model yielded an accuracy of 87.50%, while the Random Forest model, after undergoing feature selection using the Particle Swarm Optimization algorithm, achieved an accuracy of 92.19%. Therefore, the implementation of Particle Swarm Optimization as a feature selection technique demonstrates the potential to enhance the accuracy of the Random Forest method.


Keywords


Rapidminer, social media, data science, text mining, classification

References


[1] N. Chamidah and R. Sahawaly, “Comparison Support Vector Machine and Naive Bayes Methods for Classifying Cyberbullying in Twitter,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 2, p. 338, 2021, doi: 10.26555/jiteki.v7i2.21175.

[2] K. Chemnad, M. Aziz, S. B. Belhaouari, and R. Ali, “The interplay between social media use and problematic internet usage: Four behavioral patterns,” Heliyon, vol. 9, no. 5, p. e15745, 2023, doi: 10.1016/j.heliyon.2023.e15745.

[3] H. Karayiğit, Ç. İnan Acı, and A. Akdağlı, “Detecting abusive Instagram comments in Turkish using convolutional Neural network and machine learning methods,” Expert Syst. Appl., vol. 174, no. January, 2021, doi: 10.1016/j.eswa.2021.114802.

[4] A. Rejeb, K. Rejeb, A. Abdollahi, and H. Treiblmaier, “The big picture on Instagram research: Insights from a bibliometric analysis,” Telemat. Informatics, vol. 73, no. December 2021, p. 101876, 2022, doi: 10.1016/j.tele.2022.101876.

[5] M. Fortunatus, P. Anthony, and S. Charters, “Combining textual features to detect cyberbullying in social media posts,” Procedia Comput. Sci., vol. 176, pp. 612–621, 2020, doi: 10.1016/j.procs.2020.08.063.

[6] N. Yuvaraj et al., “Automatic detection of cyberbullying using multi-feature based artificial intelligence with deep decision tree classification,” Comput. Electr. Eng., vol. 92, no. May, p. 107186, 2021, doi: 10.1016/j.compeleceng.2021.107186.

[7] M. Li, Q. He, J. Zhao, Z. Xu, and H. Yang, “The effects of childhood maltreatment on cyberbullying in college students: The roles of cognitive processes,” Acta Psychol. (Amst)., vol. 226, no. January, p. 103588, 2022, doi: 10.1016/j.actpsy.2022.103588.

[8] M. F. López-Vizcaíno, F. J. Nóvoa, V. Carneiro, and F. Cacheda, “Early detection of cyberbullying on social media networks,” Futur. Gener. Comput. Syst., vol. 118, pp. 219–229, 2021, doi: 10.1016/j.future.2021.01.006.

[9] A. Perera and P. Fernando, “Accurate cyberbullying detection and prevention on social media,” Procedia Comput. Sci., vol. 181, pp. 605–611, 2021, doi: 10.1016/j.procs.2021.01.207.

[10] K. Yokotani and M. Takano, “Social contagion of cyberbullying via online perpetrator and victim networks,” Comput. Human Behav., vol. 119, no. January, p. 106719, 2021, doi: 10.1016/j.chb.2021.106719.

[11] Aldinata, A. M. Soesanto, V. C. Chandra, and D. Suhartono, “Sentiments comparison on Twitter about LGBT,” Procedia Comput. Sci., vol. 216, pp. 765–773, 2023, doi: 10.1016/j.procs.2022.12.194.

[12] M. Rodríguez-Ibánez, A. Casánez-Ventura, F. Castejón-Mateos, and P.-M. Cuenca-Jiménez, “A review on sentiment analysis from social media platforms,” Expert Syst. Appl., vol. 223, no. August 2022, p. 119862, 2023, doi: 10.1016/j.eswa.2023.119862.

[13] C. T. Hanni, “Analisis Sentimen Komentar Cyberbullying pada Media Sosial Instagram Menggunakan Metode Support Vector Machine (SVM),” 2021.

[14] N. N. Amir Sjarif, N. F. Mohd Azmi, S. Chuprat, H. M. Sarkan, Y. Yahya, and S. M. Sam, “SMS spam message detection using term frequency-inverse document frequency and random forest algorithm,” Procedia Comput. Sci., vol. 161, pp. 509–515, 2019, doi: 10.1016/j.procs.2019.11.150.

[15] I. Afdhal, R. Kurniawan, I. Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 1, pp. 49–54, 2022, [Online]. Available: http://ojs.serambimekkah.ac.id/jnkti/article/view/4004/pdf

[16] R. Azizah Arilya, Y. Azhar, and D. Rizki Chandranegara, “Sentiment Analysis on Work from Home Policy Using Naïve Bayes Method and Particle Swarm Optimization,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 3, p. 433, 2021, doi: 10.26555/jiteki.v7i3.22080.

[17] K. Setiawan, R. Beni, Burhanuddin, A. Budi Paryanti, and F. Fauzi, “KOMPARASI METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE MENGGUNAKAN PARTICLE SWARM OPTIMIZATION UNTUK ANALISIS SENTIMEN MOBIL ESEMKA JISAMAR ( Journal of Information System , Applied , Management , Accounting and Researh ) p-ISSN : 2598-8700 ( Printed ) J,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 4, no. 3, pp. 102–111, 2020, [Online]. Available: http://journal.stmikjayakarta.ac.id/index.php/jisamarTelp.+62-21-3905050

[18] A. Thakkar and K. Chaudhari, “Predicting stock trend using an integrated term frequency–inverse document frequency-based feature weight matrix with neural networks,” Appl. Soft Comput. J., vol. 96, p. 106684, 2020, doi: 10.1016/j.asoc.2020.106684.

[19] M. Liang and T. Niu, “Research on Text Classification Techniques Based on Improved TF-IDF Algorithm and LSTM Inputs,” Procedia Comput. Sci., vol. 208, pp. 460–470, 2022, doi: 10.1016/j.procs.2022.10.064.

[20] P. H. Prastyo, R. Hidayat, and I. Ardiyanto, “Enhancing sentiment classification performance using hybrid Query Expansion Ranking and Binary Particle Swarm Optimization with Adaptive Inertia Weights,” ICT Express, vol. 8, no. 2, pp. 189–197, 2022, doi: 10.1016/j.icte.2021.04.009.

[21] F. Han, W. T. Chen, Q. H. Ling, and H. Han, “Multi-objective particle swarm optimization with adaptive strategies for feature selection,” Swarm Evol. Comput., vol. 62, no. January, p. 100847, 2021, doi: 10.1016/j.swevo.2021.100847.

[22] E. P. Saputra, S. Nurajizah, M. Maulidah, N. Hidayati, and T. Rachman, “KOMPARASI MACHINE LEARNING BERBASIS PSO UNTUK PREDIKSI TINGKAT KEBERHASILAN BELAJAR BERBASIS E-LEARNING COMPARATION OF PSO-BASED LEARNING MACHINE FOR E-LEARNING-BASED,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 321–328, 2023, doi: 10.25126/jtiik.2023106469.

[23] H. Azimi, H. Shiri, and M. Mahdianpari, “Iceberg-seabed interaction analysis in sand by a random forest algorithm,” Polar Sci., vol. 34, no. March, p. 100902, 2022, doi: 10.1016/j.polar.2022.100902.

[24] A. K, D. N, D. T, B. R. B B, B. D. N, and N. V, “Effect of multi filters in glucoma detection using random forest classifier,” Meas. Sensors, vol. 25, no. October 2022, p. 100566, 2023, doi: 10.1016/j.measen.2022.100566.

[25] N. Rtayli and N. Enneya, “Selection features and support vector machine for credit card risk identification,” Procedia Manuf., vol. 46, pp. 941–948, 2020, doi: 10.1016/j.promfg.2020.05.012.

[26] R. Rastogi and M. Bansal, “Diabetes prediction model using data mining techniques,” Meas. Sensors, vol. 25, no. October 2022, p. 100605, 2023, doi: 10.1016/j.measen.2022.100605.

[27] J. Santos-Pereira, L. Gruenwald, and J. Bernardino, “Top data mining tools for the healthcare industry,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 4968–4982, 2022, doi: 10.1016/j.jksuci.2021.06.002.

[28] I. Kurniawan, D. Cahya, P. Buani, W. Apriliah, and R. A. Saputra, “Implementasi Algoritma Random Forest Untuk Menentukan Penerima Bantuan Raskin,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 421–428, 2023, doi: 10.25126/jtiik.202396225.


Full Text: PDF

DOI: 10.30595/juita.v11i2.17920

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2579-8901