Optimization of Simple Additive Weighting Method in Assessment of Research Reviewer Selection
DOI:
https://doi.org/10.30595/juita.v10i2.15030Keywords:
Accuracy testing, decision support system, optimalization, reviewer research, simple additive weightingAbstract
Quality research will not be separated from controlling systems that require a review mechanism. This demand considers it necessary to form an assessment committee or reviewer that ensures that all processes proceed towards the target target. The internal reviewer selection process is carried out by looking at several requirements of each prospective reviewer. The selection process is carried out by looking at the requirements files one by one. For this reason, it is necessary to optimize the method that is able to manage the assessment data of prospective reviewers who have the highest rating value from the results of weight calculations. Decision making in determining internal reviewers requires a method that can provide optimal decision results in terms of relatively fast processing time. The decision support method applied in determining internal reviewers is Simple Additive Weighting (SAW). The reason for choosing the SAW method in this study, the method has a basic concept that is used to find weight values on the performance rating of each alternative on all attributes. The SAW method is commonly known as the weighted summation method. There are six criteria used and fifty-five records for alternatives used. The results of the SAW method ranking obtained by A20 have the highest preference value of 0.77. This study shows the optimality of the SAW method in providing decision results based on an accuracy test value of 80%.
References
[1] W. Darmalaksana, “Sekilas Tugas Komite Reviewer Penelitian Uin Sunan Gunung Djati Bandung,” Media Inf. Ris. dan Inov., pp. 1–6, 2017.
[2] T. Limbong et al., Sistem Pendukung Keputusan: Metode & Implementasi. Medan: Yayasan Kita Menulis, 2020.
[3] W. Saputro and Kristianto, “Optimasi Sistem Pendukung Keputusan Penilaian Kinerja Pegawai Terbaik Menggunakan Simple Additive Weighting Pada PT . Asuransi Ciputra Indonesia,” Jati Emas (Jurnal Apl. Tek. dan Pengabdi. Masyarakat), vol. 6, no. 3, pp. 69–74, 2022.
[4] Y. Setiawan, A. Wijanarko, and Helmizar, “Analisis Penerapan Protokol Covid-19 Pada Optimasi Distribusi Ruang Pembelajaran Resource Sharing Dengan Implementasi Algoritma Simple Additive Weighting (SAW),” Electrician, vol. 16, no. 2, pp. 168–174, 2022, doi: 10.23960/elc.v16n2.2267.
[5] U. A. Saputro, “Optimasi Hasil Perangkingan SAW Dengan Euclidean Length Of A Vector Untuk Perangkingan Banyak Peringkat,” Inf. Syst. J., vol. 1, no. 4, pp. 25–30, 2019.
[6] A. Zumarniansyah, R. Ardianto, Y. Alkhalifi, and Q. Nur Azizah, “Penerapan Sistem Pendukung Keputusan Penilaian Karyawan Terbaik Dengan Metode Simple Additive Weighting,” J. Sist. Inf., vol. 10, no. 2, pp. 75–81, 2021, doi: 10.51998/jsi.v10i2.419.
[7] E. Erlangga, Y. Yolandari, T. Thamrin, and A. K. Puspa, “Analisis Penerapan Metode Simple Additive Weighting (SAW) Pemilihan Tanaman Hias,” Explor. Sist. Inf. dan Telemat., vol. 12, no. 1, p. 56, 2021, doi: 10.36448/jsit.v12i1.2010.
[8] F. N. Khasanah and A. E. Permanasari, “Fuzzy MADM for major selection at senior high school,” in 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 2015, pp. 41–45.
[9] F. N. Khasanah, R. T. Handayanto, H. Herlawati, D. Thamrin, P. Prasojo, and E. S. H. Hutahaean, “Decision Support System For Student Scholarship Recipients Using Simple Additive Weighting Method with Sensitivity Analysis,” in 2020 Fifth International Conference on Informatics and Computing (ICIC), 2020.
[10] F. N. Khasanah and S. Rofiah, “Sistem Seleksi Penerimaan Beasiswa Menggunakan Metode Pendukung Keputusan Simple Additive Weighting,” in Seminar Nasional APTIKOM (SEMNASTIK) 2019, 2019, pp. 118–125.
[11] D. Nofriansyah and S. Defit, Multi Criteria Decision Making (MCDM) pada Sistem Pendukung Keputusan. Yogyakarta: Deepublish, 2017.
[12] T. Limbong et al., Sistem Pendukung Keputusan Metode & Implementasi. Medan: Yayasan Kita Menulis, 2020.
[13] Dicky Nofriansyah, Konsep Data Mining VS Sistem Pendukung Keputusan. Yogyakarta: Deepublish, 2015.
[14] F. N. Khasanah, H. Herlawati, P. D. Antika, R. Sari, S. Murdowo, and E. Retnoningsih, “Rekomendasi Hasil Metode Weighted Product terhadap Pemilihan Tempat Kuliner di Sekitar Universitas Bhayangkara Bekasi,” Techno.Com, vol. 20, no. 3, pp. 382–391, 2021, doi: 10.33633/tc.v20i3.4921.
[15] W. S. Goodridge, “Sensitivity analysis using simple additive weighting method,” Int. J. Intell. Syst. Appl., vol. 8, no. 5, pp. 27–33, 2016, doi: 10.5815/ijisa.2016.05.04.
[16] Q. Bao, D. Ruan, Y. Shen, E. Hermans, and D. Janssens, “Improved hierarchical fuzzy TOPSIS for road safety performance evaluation,” Knowledge-Based Syst., vol. 32, pp. 84–90, 2012, doi: 10.1016/j.knosys.2011.08.014.
[17] R. I. Borman, D. A. Megawaty, and A. Attohiroh, “Implementasi Metode TOPSIS Pada Sistem Pendukung Keputusan Pemilihan Biji Kopi Robusta Yang Bernilai Mutu Ekspor (Studi Kasus : PT. Indo Cafco Fajar Bulan Lampung),” Fountain Informatics J., vol. 5, no. 1, p. 14, 2020, doi: 10.21111/fij.v5i1.3828.
[18] M. R. K. Muluk and A. Amelia, “Strategi Percepatan Peningkatan Jabatan Fungsional Dosen ( Studi Pada Fakultas X Universitas Y ),” Civ. Serv. J., vol. 13, no. 1, pp. 47–60, 2019.
Downloads
Published
How to Cite
Issue
Section
License

JUITA: Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.