K-Means Clustering for Grouping Rivers in DIY based on Water Quality Parameters

M. Andang Novianta, Syafrudin Syafrudin, Budi Warsito

Abstract


The Special Region of Yogyakarta (DIY) has rivers that cross rural and urban areas that are still used by the community and industry. However, cases of river water pollution in DIY are a major issue in 2021. It is very important to classify rivers according to class so that further analysis and action can be carried out. This study conducted a grouping analysis of rivers in DIY based on water quality parameters such as Total Suspended Solid (TSS), Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Phosphate, Fecal Coli, and Total Coliform. The grouping method uses the K-means algorithm. The data source is secondary data from the DIY Provincial Environment and Forestry Service. The data is in the form of 56 river samples observed in November 2020. The description of the data shows that the average of the 56 river water samples is 24.95 for TSS, 8.84 for DO, 4.33 for BOD5, 20.36 for COD, 0 .54 for Phosphate, 22.820 for Fecal Coli, and 59.210 for Total Coliform. The results of grouping with k=6 are the best compared to k = 2, 3, 4, 5, 7, and 8. The number of members in this grouping is n1 = 14, n2 = 1, n3 = 1, n4 = 5, n5 = 18, and n6 = 17. The cluster that has the highest average TSS, BOD, and COD values is the 3rd cluster (Rivers in Bantul and Sleman Regencies). The cluster that has the highest DO value is the 6th cluster (Rivers in Bantul Regency). The cluster that has the highest average Phosphate value is the 2nd cluster (Rivers in Bantul, Sleman, and Gunungkidul Regencies). The cluster that has the highest average Fecal Coli and Total Coliform values are the 4th cluster (Rivers in Bantul Regency, Yogyakarta City, and Sleman Regency).

Keywords


K-Means clustering; rivers classifying; water quality

References


[1] B. Jogja, “Data Laju Pertumbuhan Penduduk di DIY,” 2020. http://bappeda.jogjaprov.go.id/dataku/data_dasar/index/701-penduduk (accessed Jan. 02, 2023).

[2] B. Warsito, S. Sumiyati, H. Yasin, and H. Faridah, “Evaluation of river water quality by using hierarchical clustering analysis,” 2021, doi: 10.1088/1755-1315/896/1/012072

[3] Z. Di, M. Chang, and P. Guo, “Water Quality Evaluation of the Yangtze River in China Using Machine Learning Techniques and Data Monitoring on Different Time Scales,” Water, vol. 11, no. 2, p. 339, 2019, doi: https://doi.org/10.3390/w11020339

[4] O. Herliana, T. S. Widodo, and I. Soesanti, “Klasifikasi Nomsupervised Citra Thermal Kanker Payudara Berbasis Fuzzy C-MEANS,” Jnteti, vol. 1, no. 3, pp. 1–5, 2012, doi: 10.22146/jnteti

[5] H. A. Nugroho, D. Hardiyanto, and T. B. Adji, “Nipple detection to identify negative content on digital images,” in Proceeding - 2016 International Seminar on Intelligent Technology and Its Application, ISITIA 2016: Recent Trends in Intelligent Computational Technologies for Sustainable Energy, 2016, pp. 43–48. doi: 10.1109/ISITIA.2016.7828631

[6] D. Hardiyanto, S. Kristiyana, D. Kurniawan, and D. A. Sartika, “Klasifikasi Motif Citra Batik Yogyakarta Menggunakan Metode Adaptive Neuro Fuzzy Inference System,” Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 8, no. 2, p. 229, 2019, doi: 10.36055/setrum.v8i2.6545

[7] D. A. Sartika, H. Arrosida, and D. Hardiyanto, “Implementasi Teknik Klasifier Adaptive Neuro Fuzzy Inference System Untuk Mengklasifikasi Motif Citra Batik Jawa Timur,” Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 11, no. 1, pp. 126–134, 2022, doi: 10.36055/setrum.v11i1.14872

[8] I. Rish, “An empirical study of the naive Bayes classifier,” IJCAI 2001 Work Empir Methods Artif Intell, vol. 3, no. 22, pp. 4863–4869, 2001, doi: 10.1039/b104835j

[9] L. Wenchao, Z. Yong, and X. Shixiong, “A Novel Clustering Algorithm Based on Hierarchical and K-means Clustering,” in Chinese Control Conference, 2007, pp. 605–609, doi: 10.1109/CHICC.2006.4347538

[10] H. Sulatri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokkan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, 2017, doi: https://doi.org/10.25077/TEKNOSI.v3i2.2017.299-305

[11] O. Mohammadrezapour, O. Kisi, and F. Pourahmad, “F. Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality,” Neural Comput. Appl., vol. 32, no. 8, pp. 3763–3775, 2020, doi: https://doi.org/10.1007/s00521-018-3768-7

[12] T. Zubaidah, N. Karnaningroem, and A. Slamet, “K-means method for clustering water quality status on the rivers of Banjarmasin, Indonesia,” ARPN J. Eng. Appl. Sci., vol. 13, no. 6, 2018. doi:10.31227/osf.io/s9n2u

[13] D. A. I. C. Dewi and D. A. K. Pramita, “nalisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, 2019, doi: 10.31940/matrix.v9i3.1662

[14] A. Muhariya, I. Riadi, and Y. Prayudi, “Cyberbullying Analysis on Instagram Using K-Means Clustering,” JUITA J. Inform., vol. 10, no. 2, p. 261, 2022, doi: 10.30595/juita.v10i2.14490

[15] F. Indriyani and E. Irfiani, “Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means,” JUITA J. Inform., vol. 7, no. 2, p. 109, 2019, doi: 10.30595/juita.v7i2.5529

[16] M. Nishom, S. F. Handayani, and D. Dairoh, “Pillar Algorithm in K-Means Method for Identification Health Human Resources Availability Profile in Central Java,” JUITA J. Inform., vol. 9, no. 2, p. 145, 2021, doi: 10.30595/juita.v9i2.9860

[17] T. N. Hidayat, F. A. Purnomo, and Y. Yudhanto, “PDAM Performance Clustering using K-Means,” in 1st International Conference on Smart Technology, Applied Informatics, and Engineering (APICS), 2022, pp. 148–152, doi: 10.1109/APICS56469.2022.9918683

[18] I. M. Erwandi, “Pengelompokan kemiskinan Kabupaten/Kota di Papua dengan menggunakan metode K-Means,” UIN Sunan Ampel Surabaya, 2021.

[19] M. A. Nahdliyah, T. Widiharih, and A. Prahutama, “METODE k-MEDOIDS CLUSTERING DENGAN VALIDASI SILHOUETTE INDEX DAN C-INDEX (Studi Kasus Jumlah Kriminalitas Kabupaten/Kota di Jawa Tengah Tahun 2018),” Gaussian, vol. 8, no. 2, pp. 161–170, 2019, doi: https://doi.org/10.14710/j.gauss.8.2.161-170

[20] Admin, “Indeks Kualitas Lingkungan Hidup (IKLH) DIY,” yogyakarta, 2020. [Online]. Available: https://dlhk.jogjaprov.go.id/indeks-kualitas-lingkungan-hidup-iklh-diy.


Full Text: PDF

DOI: 10.30595/juita.v11i1.16986

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2579-8901