Implementation of Backpropagation Neural Network for Prediction Magnetocaloric Effect of Manganite

Jan Setiawan, Silviana Simbolon, Yunasfi Yunasfi

Abstract


In the field of magnetic cooling technology, there is still much to learn about the magnetocaloric properties of magnetic cooling materials. Research into magnetocaloric manganites exhibiting a significant maximum magnetic entropy change in the vicinity of ambient temperature yields encouraging outcomes for the advancement of magnetic refrigeration apparatus. Through a combination of chemical substitutions, changes in the amount of oxygen present, and different synthesis techniques, these manganites undergo lattice distortions that result in pseudocubic, orthorhombic, and rhombohedral structures instead of perovskite cubic structures. The present investigation used backpropagation neural networks (BPNNs) to investigate the correlations among maximum magnetic entropy change (MMEC), Curie temperature (Tc), lanthanum manganite compositions, lattice properties, and dopant ionic radii. Simbrain 3.07 was used to execute the BPNN model, and the suggested model accuracy was examined using coefficient determination. As a result, the model's predicted values for the mean absolute error, root mean square, and coefficient correlation for MMEC are 0.012, 0.022, and 0.9861, respectively. The model predicts that the Curie temperature mean absolute error, root mean square, and coefficient correlation will be 0.015, 0.021, and 0.9947, respectively. Based on these results, BPNN has the potential to be applied in predicting the MMEC and Tc of manganite as preliminary decision during experiments.

Keywords


backpropagation neural network, simbrain, manganites, magnetocaloric effect, Curie temperature

References


[1] M.-H. Phan and S.-C. Yu, “Review of the magnetocaloric effect in manganite materials,” J. Magn. Magn. Mater., vol. 308, no. 2, pp. 325–340, Jan. 2007, doi: 10.1016/j.jmmm.2006.07.025.

[2] T. Gottschall, “Magnetocaloric effect of gadolinium in high magnetic fields,” Phys. Rev. B, vol. 99, no. 13, p. 134429, Apr. 2019, doi: 10.1103/PhysRevB.99.134429.

[3] L. V. Bau, O. Morán, P. T. Tho, and P. T. Phong, “Critical Properties and Magnetocaloric Effect in La0.7Ba0.3Mn0.8Ti0.2O3 Ceramic,” Metall. Mater. Trans. A, vol. 51, no. 4, pp. 1924–1932, Apr. 2020, doi: 10.1007/s11661-020-05662-y.

[4] T. Shou, “Degradation of gas-phase o-xylene via combined non-thermal plasma and Fe doped LaMnO3 catalysts: Byproduct control,” J. Hazard. Mater., vol. 387, p. 121750, Apr. 2020, doi: 10.1016/j.jhazmat.2019.121750.

[5] F. Li, Z. Wang, A. Wang, S. Wu, and L. Zhang, “N-type LaFe1-xMnxO3 prepared by sol-gel method for gas sensing,” J. Alloys Compd., vol. 816, p. 152647, Mar. 2020, doi: 10.1016/j.jallcom.2019.152647.

[6] Z. Xu, Y. Li, Y. Wan, S. Zhang, and C. Xia, “Nickel enriched Ruddlesden-Popper type lanthanum strontium manganite as electrode for symmetrical solid oxide fuel cell,” J. Power Sources, vol. 425, pp. 153–161, Jun. 2019, doi: 10.1016/j.jpowsour.2019.04.005.

[7] P. Goel, “Perovskite materials as superior and powerful platforms for energy conversion and storage applications,” Nano Energy, vol. 80, p. 105552, Feb. 2021, doi: 10.1016/j.nanoen.2020.105552.

[8] M. S. Sowmehsaraee, M. Ranjbar, and M. Abedi, “Investigating the effect of nano-structured magnetic particles lanthanum strontium manganite on perovskite solar cells,” J. Sol. Energy Res., vol. 7, no. 1, pp. 945–956, 2022, doi: 10.22059/JSER.2021.325062.1205.

[9] A. Khochaiche, “First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement,” Mater. Sci. Eng. C, vol. 123, p. 111970, Apr. 2021, doi: 10.1016/j.msec.2021.111970.

[10] F. Kuang, Z. Long, D. Kuang, X. Liu, and R. Guo, “Application of back propagation neural network to the modeling of slump and compressive strength of composite geopolymers,” Comput. Mater. Sci., vol. 206, p. 111241, 2022, doi: 10.1016/j.commatsci.2022.111241.

[11] R. Al-Jarrah and F. M. AL-Oqla, “A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing,” Compos. Struct., vol. 289, p. 115475, Jun. 2022, doi: 10.1016/j.compstruct.2022.115475.

[12] Y. Wang, “Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural Network,” Metals (Basel)., vol. 10, no. 2, p. 234, 2020, doi: 10.3390/met10020234.

[13] E. Bouzaiene, A. H. Dhahri, J. Dhahri, E. K. Hlil, and A. Bajahzar, “Effect of A-site-substitution on structural, magnetic and magnetocaloric properties in La0.7Sr0.3 Mn0.9Cu0.1O3 manganite,” J. Magn. Magn. Mater., vol. 491, p. 165540, Dec. 2019, doi: 10.1016/j.jmmm.2019.165540.

[14] V. Franco, J. S. Blázquez, and A. Conde, “Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change,” Appl. Phys. Lett., vol. 89, no. 22, Nov. 2006, doi: 10.1063/1.2399361.

[15] V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci., vol. 93, pp. 112–232, Apr. 2018, doi: 10.1016/j.pmatsci.2017.10.005.

[16] L. Lin, “Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode,” J. Mater. Sci., vol. 54, no. 10, pp. 7789–7797, May 2019, doi: 10.1007/s10853-018-03258-x.

[17] Z. Yang, “Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells,” Sci. Rep., vol. 7, no. 1, p. 14575, Nov. 2017, doi: 10.1038/s41598-017-15300-0.

[18] W. Guo, “Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: A way towards light extraction efficiency enhancement of III-nitride based light emitting diodes,” J. Appl. Phys., vol. 117, no. 11, p. 113107, Mar. 2015, doi: 10.1063/1.4915903.

[19] E. Oumezzine, S. Hcini, E.-K. Hlil, E. Dhahri, and M. Oumezzine, “Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La 0.6 Pr 0.1 Ba 0.3 Mn 1− x Ni x O 3 nanocrystalline manganites synthesized by Pechini sol–gel method,” J. Alloys Compd., vol. 615, pp. 553–560, Dec. 2014, doi: 10.1016/j.jallcom.2014.07.001.

[20] K. Abdouli, “Structural, magnetic and magnetocaloric properties of La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with (0 ≤ x ≤ 0.15),” J. Magn. Magn. Mater., vol. 475, pp. 635–642, Apr. 2019, doi: 10.1016/j.jmmm.2018.12.007.

[21] M. Oumezzine, S. Zemni, and O. Peña, “Room temperature magnetic and magnetocaloric properties of La0.67Ba0.33Mn0.98Ti0.02O3 perovskite,” J. Alloys Compd., vol. 508, no. 2, pp. 292–296, Oct. 2010, doi: 10.1016/j.jallcom.2010.08.145.

[22] S. E. Kossi, S. Ghodhbane, S. Mnefgui, J. Dhahri, and E. K. Hlil, “The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1−x)TixO3 (0≤x≤0.2),” J. Magn. Magn. Mater., vol. 395, pp. 134–142, Dec. 2015, doi: 10.1016/j.jmmm.2015.07.050.

[23] A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, and A. Cheikhrouhou, “Influence of transition metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites,” Ceram. Int., vol. 41, no. 8, pp. 10177–10184, Sep. 2015, doi: 10.1016/j.ceramint.2015.04.123.

[24] S. Banik, K. Das, and I. Das, “Enhancement of magnetoresistance and magnetocaloric effect at room temperature in polycrystalline Pr0.8-xLaxSr0.2MnO3 (x= 0.2) compound,” J. Magn. Magn. Mater., vol. 490, p. 165443, Nov. 2019, doi: 10.1016/j.jmmm.2019.165443.

[25] A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. C. Boudjada, and A. Cheikhrouhou, “The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−xCoxO3 manganites,” Ceram. Int., vol. 41, no. 6, pp. 7723–7728, Jul. 2015, doi: 10.1016/j.ceramint.2015.02.103.

[26] P. Nisha, S. Savitha Pillai, M. R. Varma, and K. G. Suresh, “Critical behavior and magnetocaloric effect in La0.67Ca0.33Mn1−xCrxO3 (x = 0.1, 0.25),” Solid State Sci., vol. 14, no. 1, pp. 40–47, Jan. 2012, doi: 10.1016/j.solidstatesciences.2011.10.013.

[27] J. Makni-Chakroun, R. M’nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Chniba-Boudjada, and A. Cheikhrouhou, “Effect of A-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites,” Chem. Phys. Lett., vol. 707, pp. 61–70, Sep. 2018, doi: 10.1016/j.cplett.2018.07.039.

[28] Z. Wang and J. Jiang, “Magnetic entropy change in perovskite manganites La0.7A0.3MnO3 La0.7A0.3Mn0.9Cr0.1O3 (A = Sr, Ba, Pb) and Banerjee criteria on phase transition,” Solid State Sci., vol. 18, pp. 36–41, Apr. 2013, doi: 10.1016/j.solidstatesciences.2012.12.020.

[29] A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, and A. Cheikhrouhou, “Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites,” J. Alloys Compd., vol. 619, pp. 627–633, Jan. 2015, doi: 10.1016/j.jallcom.2014.09.078.

[30] E. Tka, K. Cherif, and J. Dhahri, “Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites La0.57Nd0.1Sr0.33Mn1−x Sn x O3 (x = 0.05–0.3),” Appl. Phys. A, vol. 116, no. 3, pp. 1181–1191, Sep. 2014, doi: 10.1007/s00339-013-8202-5.

[31] A. Bettaibi, “Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite,” J. Alloys Compd., vol. 650, pp. 268–276, Nov. 2015, doi: 10.1016/j.jallcom.2015.05.161.

[32] S. Vadnala and S. Asthana, “Magnetocaloric effect and critical field analysis in Eu substituted La 0.7-x Eu x Sr 0.3 MnO 3 (x = 0.0, 0.1, 0.2, 0.3) manganites,” J. Magn. Magn. Mater., vol. 446, pp. 68–79, Jan. 2018, doi: 10.1016/j.jmmm.2017.09.001.

[33] S. Kallel, N. Kallel, O. Peña, and M. Oumezzine, “Large magnetocaloric effect in Ti-modified La0.70Sr0.30MnO3 perovskite,” Mater. Lett., vol. 64, no. 9, pp. 1045–1048, May 2010, doi: 10.1016/j.matlet.2010.02.005.

[34] S. Hcini, M. Boudard, S. Zemni, and M. Oumezzine, “Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1−xFexO3 manganites,” Ceram. Int., vol. 40, no. 10, pp. 16041–16050, Dec. 2014, doi: 10.1016/j.ceramint.2014.07.140.

[35] A. O. Ayaş, S. Kılıç Çetin, M. Akyol, G. Akça, and A. Ekicibil, “Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) perovskite system,” J. Mol. Struct., vol. 1200, p. 127120, Jan. 2020, doi: 10.1016/j.molstruc.2019.127120.

[36] S. Mahjoub, M. Baazaoui, R. M’nassri, H. Rahmouni, N. C. Boudjada, and M. Oumezzine, “Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1−xFexO3 (0⩽x⩽0.075) manganites,” J. Alloys Compd., vol. 608, pp. 191–196, Sep. 2014, doi: 10.1016/j.jallcom.2014.04.125.

[37] H. Ben Khlifa, Y. Regaieg, W. Cheikhrouhou-Koubaa, M. Koubaa, and A. Cheikhrouhou, “Structural, magnetic and magnetocaloric properties of K-doped Pr0.8Na0.2−xKxMnO3 manganites,” J. Alloys Compd., vol. 650, pp. 676–683, Nov. 2015, doi: 10.1016/j.jallcom.2015.07.140.

[38] C. G. Ünlü, Y. E. Tanış, M. B. Kaynar, T. Şimşek, and Ş. Özcan, “Magnetocaloric effect in La0.7 NdxBa(0.3-x)MnO3 (x = 0, 0.05, 0.1) perovskite manganites,” J. Alloys Compd., vol. 704, pp. 58–63, May 2017, doi: 10.1016/j.jallcom.2017.02.030.

[39] A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, and E. K. Hlil, “Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 (0.1⩽x⩽0.4) manganites,” J. Alloys Compd., vol. 645, pp. 559–565, Oct. 2015, doi: 10.1016/j.jallcom.2015.05.043.

[40] A. Ben Jazia Kharrat, K. Khirouni, and W. Boujelben, “Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route,” Phys. Lett. A, vol. 382, no. 48, pp. 3435–3448, Dec. 2018, doi: 10.1016/j.physleta.2018.10.010.

[41] S. Kallel, N. Kallel, A. Hagaza, O. Peña, and M. Oumezzine, “Large magnetic entropy change above 300 K in (La0.56Ce0.14)Sr0.3MnO3 perovskite,” J. Alloys Compd., vol. 492, no. 1–2, pp. 241–244, Mar. 2010, doi: 10.1016/j.jallcom.2009.11.107.

[42] A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, and J. M. D. Coey, “Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature,” J. Magn. Magn. Mater., vol. 323, no. 16, pp. 2214–2218, Aug. 2011, doi: 10.1016/j.jmmm.2011.03.036.

[43] H. Ben Khlifa, “Effect of K-doping on the structural, magnetic and magnetocaloric properties of Pr0.8Na0.2–K MnO3 (0 ≤ x ≤ 0.15) manganites,” J. Alloys Compd., vol. 680, pp. 388–396, Sep. 2016, doi: 10.1016/j.jallcom.2016.04.138.

[44] K. Laajimi, M. Khlifi, E. K. Hlil, M. H. Gazzah, and J. Dhahri, “Enhancement of magnetocaloric effect by Nickel substitution in La0.67Ca0.33Mn0.98Ni0.02O3 manganite oxide,” J. Magn. Magn. Mater., vol. 491, p. 165625, Dec. 2019, doi: 10.1016/j.jmmm.2019.165625.

[45] Y. Zhang and X. Xu, “Machine learning the magnetocaloric effect in manganites from lattice parameters,” Appl. Phys. A, vol. 126, no. 5, 2020, doi: 10.1007/s00339-020-03503-8.

[46] T.-A. Nguyen, H.-B. Ly, and B. T. Pham, “Backpropagation Neural Network-Based Machine Learning Model for Prediction of Soil Friction Angle,” Math. Probl. Eng., vol. 2020, pp. 1–11, Dec. 2020, doi: 10.1155/2020/8845768.

[47] A. F. Daru, M. B. Hanif, and E. Widodo, “Improving Neural Network Performance with Feature Selection Using Pearson Correlation Method for Diabetes Disease Detection,” JUITA J. Inform., vol. 9, no. 1, p. 123, May 2021, doi: 10.30595/juita.v9i1.9941.

[48] A. G. Priya Varshini, K. Anitha Kumari, D. Janani, and S. Soundariya, “Comparative analysis of Machine learning and Deep learning algorithms for Software Effort Estimation,” J. Phys. Conf. Ser., vol. 1767, no. 1, p. 012019, 2021, doi: 10.1088/1742-6596/1767/1/012019.


Full Text: PDF

DOI: 10.30595/juita.v12i1.20452

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2579-8901