Development of Staff Evaluation Software Based on Association Matrix Methods and Data Mining Using the Streamlit Framework

Authors

  • Yosia Adi Susetyo Satya Wacana Christian University, Indonesia
  • Hanna Arini Parhusip Satya Wacana Christian University, Indonesia
  • Suryasatriya Trihandaru Satya Wacana Christian University, Indonesia

DOI:

https://doi.org/10.30595/juita.v12i2.23300

Keywords:

association matrix, data extraction, streamlit framework, personnel evaluation

Abstract

This study discusses evaluating employee performance in microbiology laboratories using an association matrix implemented in web-based software with the Streamlit framework. The purpose of the research is to improve the employee performance evaluation process, which previously used conventional methods. This software is built from a sample receipt recording history data stored in a MySQL database. The initially unstructured data was processed using Python libraries such as NumPy, Matplotlib, Pandas, and Difflib to generate personnel evaluation information such as specialization, task duration, workload, and individual competencies. This software can provide a fast and accurate performance assessment according to the evaluation period. In a test with the System Usability Scale (SUS), the software scored 75.83, which was rated "good.". These results show that the software is easy to use and can improve the efficiency of employee performance evaluation. Follow-up tests with questionnaires given to 18 users showed that this system was preferable to previous conventional methods. This software helps laboratory managers evaluate employee performance effectively and efficiently.

Author Biographies

Yosia Adi Susetyo, Satya Wacana Christian University, Indonesia

Master of Data Science, Faculty of Science and Mathematics

Hanna Arini Parhusip, Satya Wacana Christian University, Indonesia

Master of Data Science, Faculty of Science and Mathematics

Suryasatriya Trihandaru, Satya Wacana Christian University, Indonesia

Master of Data Science, Faculty of Science and Mathematics

References

[1] D. Andreas, ‘Employee Perfomance: The Effect of Motivation and Job Satisfaction’, J. Kepegawai. dan Organ., vol. 1, no. 1, pp. 28–35, 2022.

[2] A. Hartika, M. Fitridiani, and M. Asbari, ‘The Effect of Job Satisfaction and Job Loyalty on Employee Performance: A Narrative Literature Review’, J. Inf. Syst. Manag., vol. 2, no. 3, pp. 9–15, 2023.

[3] A. Wilkinson, N. Bacon, T. Redman, and S. Snell, The SAGE handbook of human resource management, 12th ed. London: Kogan Page, 2010. doi: 10.4135/9780857021496.

[4] L. R. Sembiring, Y. R. Edward, and C. F. Rostina, ‘The Effect of Work Motivation on Employee Performance with Job Satisfaction as an Intervening Variable at PT. Indonesia Tourism Development Corporation (ITDC)’, Undiksha J. Econ., vol. 10, no. 1, pp. 146 – 155, 2018.

[5] J. A. Mazzon, ‘Using the methodological association matrix in marketing studies’, Rev. Bras. Mark., vol. 17, no. 5, pp. 747–770, 2018, doi: 10.5585/bjm.v17i5.4175.

[6] Y. Qin, Y. Peng, K. Huang, C. Zhou, and Y. Tian, ‘Association Analysis-Based Cybersecurity Risk’, IEEE Syst. J., pp. 1–10, 2020, doi: 10.1109/JSYST.2020.3010977.

[7] Djufri, ‘Determination of distribution pattern, association, and interaction of plant species particularly the grassland in Baluran National Park, East Java’, Biodiversitas J. Biol. Divers., vol. 3, no. 1, pp. 181–188, 2002, doi: 10.13057/biodiv/d030103.

[8] X. Ou, Z. You, and X. He, ‘Local Path Planner for Mobile Robot Considering Future Positions of Obstacles’, Processes, vol. 12, no. 5, 2024, doi: 10.3390/pr12050984.

[9] W. Mulyana, W. Putri Bunda, M. Rikky Syahputra, N. Maulana, T. Habincaran, and S. Wahyuni, ‘Pengembangan Aplikasi Berbasis Web Untuk Penilaian Kinerja Karyawan Pada Pt. Stars Internasional’, JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2318–2324, 2024, doi: 10.36040/jati.v8i2.9474.

[10] A. J. M. Novita, A. W. Rizqi, and H. Hidayat, ‘Aplikasi Penilaian Kinerja Karyawan Berbasis Website Menggunakan Metode Topsis Di Pt Petrokimia Gresik’, JUSTI (Jurnal Sist. dan Tek. Ind., vol. 2, no. 3, p. 307, 2022, doi: 10.30587/justicb.v2i3.3913.

[11] H. A. Mumtahana, ‘Optimization of Transaction Database Design with MySQL and MongoDB’, SinkrOn, vol. 7, no. 3, pp. 883–890, 2022, doi: 10.33395/sinkron.v7i3.11528.

[12] S. K. R. Moosavi, A. Saadat, Z. Abaid, W. Ni, K. Li, and M. Guizani, ‘Feature selection based on dataset variance optimization using Hybrid Sine Cosine – Firehawk Algorithm (HSCFHA)’, Futur. Gener. Comput. Syst., vol. 155, no. June 2023, pp. 272–286, 2024, doi: 10.1016/j.future.2024.02.017.

[13] S. A. Alasadi and W. S. Bhaya, ‘Review of data preprocessing techniques in data mining’, J. Eng. Appl. Sci., vol. 12, no. 16, pp. 4102–4107, 2017, doi: 10.3923/jeasci.2017.4102.4107.

[14] K. Maharana, S. Mondal, and B. Nemade, ‘A review: Data pre-processing and data augmentation techniques’, Glob. Transitions Proc., vol. 3, no. 1, pp. 91–99, 2022, doi: 10.1016/j.gltp.2022.04.020.

[15] M. Z. Al-Taie, S. Kadry, and J. P. Lucas, ‘Online data preprocessing: A case study approach’, Int. J. Electr. Comput. Eng., vol. 9, no. 4, pp. 2620–2626, 2019, doi: 10.11591/ijece.v9i4.pp2620-2626.

[16] M. Danubianu, ‘Step By Step Data Preprocessing for Data Mining. A Case Study’, Int. Conf. Inf. Technol., no. 17-18 September 2014, pp. 1–8, 2015, [Online]. Available: https://www.researchgate.net/publication/288825433

[17] W. Hidayat, E. Utami, and A. D. Hartanto, ‘Effect of Stemming Nazief Adriani on the Ratcliff/Obershelp algorithm in identifying level of similarity between slang and formal words’, 2020 3rd Int. Conf. Inf. Commun. Technol. ICOIACT 2020, pp. 22–27, 2020, doi: 10.1109/ICOIACT50329.2020.9331973.

[18] Y. Özçevik, F. Yücalar, and M. Demircioğlu, ‘Determining a Proper Text Similarity Approach for Resume Parsing Process in a Digitized HR Software’, Celal Bayar Univ. J. Sci., vol. 18, no. 4, pp. 371–378, 2022, doi: 10.18466/cbayarfbe.1049845.

[19] B. Y. Ong, R. Wen, and A. N. Zhang, ‘Data blending in manufacturing and supply chains’, Proc. - 2016 IEEE Int. Conf. Big Data, Big Data 2016, pp. 3773–3778, 2016, doi: 10.1109/BigData.2016.7841047.

[20] J. M. Nápoles-Duarte, A. Biswas, M. I. Parker, J. P. Palomares-Baez, M. A. Chávez-Rojo, and L. M. Rodríguez-Valdez, ‘Stmol: A component for building interactive molecular visualizations within streamlit web-applications’, Front. Mol. Biosci., vol. 9, no. September, pp. 1–10, 2022, doi: 10.3389/fmolb.2022.990846.

[21] Y. Cui, X. Shi, Y. Qin, Q. Wang, X. Cao, X. Che, Y. Pan, B. Wang, M. Lei, and Y. Liu, ‘Establishment and validation of an interactive artificial intelligence platform to predict postoperative ambulatory status for patients with metastatic spinal disease: a multicenter analysis’, Int. J. Surg., vol. 110, no. 5, pp. 2738–2756, 2024, doi: 10.1097/JS9.0000000000001169.

[22] M. A. Sufian, W. Hamzi, S. Zaman, L. Alsadder, B. Hamzi, J. Varadarajan, and M. A. K. Azad, ‘Enhancing Clinical Validation for Early Cardiovascular Disease Prediction through Simulation, AI, and Web Technology’, Diagnostics, vol. 14, no. 12, pp. 1–44, 2024, doi: 10.3390/diagnostics14121308.

[23] M. Ollenschläger, F. Kluge, M. Müller-Schulz, R. Püllen, C. Möller, J. Klucken, and B. M. Eskofier, ‘Wearable gait analysis systems: ready to be used by medical practitioners in geriatric wards?’, Eur. Geriatr. Med., vol. 13, no. 4, pp. 817–824, 2022, doi: 10.1007/s41999-022-00629-1.

[24] K. Boyd, R. Bond, A. Vertesi, H. Dogan, and J. Magee, ‘How People Judge the Usability of a Desktop Graphic User Interface at Different Time Points: Is there Evidence for Memory Decay, Recall Bias or Temporal Bias?’, Interact. Comput., vol. 31, no. 2, pp. 221–230, 2019, doi: 10.1093/iwc/iwz019.

[25] S. Putri, Dwi Andini; Hadinata, Denda Rinaldi; Nurwahyuni, ‘Website Usability Testing on the Information and Coordination Center of Covid-19 in West Java Using the System Usability Scale’, Jitk, vol. 6, no. 1, pp. 3–8, 2020, doi: 10.33480/jitk.v6i1.1335.

[26] A. Jahmani, O. Jawabreh, E. A. AL Fahmawee, M. S. Almasarweh, and B. J. A. Ali, ‘The Impact of Employee Management on Organizational Performance in Dubai’s Five-Star Hotel Sector’, J. Stat. Appl. Probab., vol. 12, no. 2, pp. 395–404, 2023, doi: 10.18576/jsap/120206.

[27] J. A. Kuprenas, ‘Implementation and performance of a matrix organization structure’, Int. J. Proj. Manag., vol. 21, no. 1, pp. 51–62, 2003, doi: 10.1016/S0263-7863(01)00065-5.

Downloads

Published

2024-11-07

How to Cite

Susetyo, Y. A., Parhusip, H. A., & Trihandaru, S. (2024). Development of Staff Evaluation Software Based on Association Matrix Methods and Data Mining Using the Streamlit Framework. JUITA: Jurnal Informatika, 12(2), 255–266. https://doi.org/10.30595/juita.v12i2.23300

Similar Articles

> >> 

You may also start an advanced similarity search for this article.