Comparison of Steganography Using the Discrete Cosine Transform Method on Image Based Bilinear, Nearest Neighbor and Spline Interpolation
DOI:
https://doi.org/10.30595/juita.v9i1.7302Keywords:
interpolation, discrete cosine transform (DCT), steganography, MSE, PSNRAbstract
The research was conducted in the field of steganography. Discrete Cosine Transform (DCT) is a method used in the insertion technique. The results of steganography have problems if they look blurry, have low levels of similarity and high error values. One way to solve this problem is by proposing image interpolation. The interpolation method consists of various kinds and gives each other advantages. This study intends to compare three kinds of interpolation techniques to find the best one. The three interpolation techniques are bilinear, nearest neighbor, and spline. The method used in this research is experimental. Images with extension formats * .tif, * .png, and * .bmp with dimensions of 512x512 px are interpolated by scaling 1.5, 2, and 4. The results of the interpolation process are used to insert messages in * .txt format of 157 bytes with discrete cosines transform (DCT). The image quality of the message insertion is measured by the MSE and PSNR values. The result of the message insertion test shows that the value of the image quality is directly proportional, meaning that if the condition of the message size is fixed and the cover dimensions are greater, the MSE value will be smaller and the PSNR value will be greater. Images with * .tif and * .bmp extension formats have good stability, * .png images vary in size. The smallest error value test results were obtained in the spline interpolation technique and this method when compared to the other two techniques had the lowest average MSE value of 8.221 and the PSNR value of 40,301 dB.References
[1] G. Garno, R. I. Adam, and D. Yusup, “Perpaduan Interpolasi Bilinear dan Least Significant Bit pada Citra Digital dalam Teknik Steganografi,” Telematika, vol. 12, no. 1, p. 59, 2019, doi: 10.35671/telematika.v12i1.766.
[2] N. Rismawati, “Analisis dan Perancangan Simulasi Enkripsi dan Dekripsi pada Algoritma Steganografi untuk Penyisipan Pesan Text pada Image menggunakan Metode Least Significant Bit (LSB) Berbasis Cryptool2,” Fakt. Exacta, vol. 12, no. 2, pp. 132–144, 2019, doi: 10.30998/faktorexacta.v12i2.3527.
[3] D. R. I. M. Setiadi, “Improved payload capacity in LSB image steganography uses dilated hybrid edge detection,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2019, doi: 10.1016/j.jksuci.2019.12.007.
[4] P. Malathi and T. Gireeshkumar, “Relating the Embedding Efficiency of LSB Steganography Techniques in Spatial and Transform Domains,” Procedia Comput. Sci., vol. 93, no. September, pp. 878–885, 2016, doi: 10.1016/j.procs.2016.07.270.
[5] M. Ramalingam, N. A. Mat Isa, and R. Puviarasi, “A secured data hiding using affine transformation in video steganography,” Procedia Comput. Sci., vol. 171, no. 2019, pp. 1147–1156, 2020, doi: 10.1016/j.procs.2020.04.123.
[6] R. S. Gulo, R. L. Simangunsong, S. B. K. Tafonao, M. Yusuf, and Yennimar, “Comparison of Spread Spectrum with Redundant Pattern Coding In Securing Text Messages Into Audio,” J. Mantik, vol. 4, no. 2, pp. 1237–1242, 2020, [Online]. Available: http://iocscience.org/ejournal/index.php/mantik/article/view/882/595.
[7] H. Februariyanti, Wahyudi, A. Susanto, and Rihartanto, “Steganografi Pesan Terenkripsi Affine Cipher Menggunakan Metoda LSB Dengan Pola Genap Ganjil,” Proceeding SINTAK, pp. 411–419, 2019.
[8] Z. Zhang et al., “Single image super resolution via neighbor reconstruction,” Pattern Recognit. Lett., vol. 125, pp. 157–165, 2019, doi: 10.1016/j.patrec.2019.04.021.
[9] C. Jiang and Q. Chen, “Construction of blind restoration model for super-resolution image based on chaotic neural network,” Chaos, Solitons and Fractals, vol. 131, no. xxxx, p. 109498, 2020, doi: 10.1016/j.chaos.2019.109498.
[10] F. Li, K. Wu, C. Qin, and J. Lei, “Anti-compression JPEG steganography over repetitive compression networks,” Signal Processing, vol. 170, p. 107454, 2020, doi: 10.1016/j.sigpro.2020.107454.
[11] A. Rohmani and S. Wibowo, “Rekayasa Perancangan Penyembunyian Pesan File Dan Text dengan Metode Enkripsi Des dan Enkripsi RC4,” Techno.COM, vol. 15, no. 4, pp. 369–378, 2016.
[12] M. luthfi , I. F. Aksani , Manurung, “Studi Dan Implementasi Steganografi Pada Citra Jpeg Dengan Metode Spread Spectrum,” JIKA (Jurnal Inform., vol. 1, no. 2, pp. 55–64, 2017, doi: 10.31000/jika.v1i2.539.
[13] A. Malik et al., “Reversible data hiding in homomorphically encrypted image using interpolation technique,” J. Inf. Secur. Appl., vol. 48, pp. 1–7, 2019, doi: 10.1016/j.jisa.2019.102374.
[14] M. Kaur and V. K. Attri, “Implementation of Steganographic Method based on Interpolation and LSB Substitution of Digital Images with Watermarking and Visual Cryptography,” Int. J. Comput. Appl., vol. 121, no. 21, pp. 7–12, 2015, doi: 10.5120/21822-5073.
[15] S. K. Dhara and D. Sen, “Across-scale process similarity based interpolation for image super-resolution,” Appl. Soft Comput. J., vol. 81, p. 105508, 2019, doi: 10.1016/j.asoc.2019.105508.
[16] G. Garno and A. Solehudin, “Teknik Steganografi dengan Metode Discrete Cosines Transform (DCT) pada Citra Interpolasi Bilinear untuk Pengamanan Pesan,” J. Inform. Upgris, vol. 3, no. 2, pp. 116–121, 2017, doi: 10.26877/jiu.v3i2.1815.
[17] G. Garno and R. I. Adam, “Skema Penyembunyian Data pada Gambar Berbasis Interpolasi Kubik B-Spline Menggunakan Metode Least Significant Bit (LSB),” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 255, 2019, doi: 10.26418/jp.v5i3.37584.
[18] S. H. Mahajan and V. K. Harpale, “Adaptive and non-adaptive image interpolation techniques,” Proc. - 1st Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2015, pp. 772–775, 2015, doi: 10.1109/ICCUBEA.2015.154.
[19] S. A. Parah et al., Secure and reversible data hiding scheme for healthcare system using magic rectangle and a new interpolation technique. Elsevier Inc., 2019.
[20] P. P. S. Parsania and D. P. V.Virparia, “A Review: Image Interpolation Techniques for Image Scaling,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 02, no. 12, pp. 7409–7414, 2015, doi: 10.15680/ijircce.2014.0212024.
[21] E. A. Mittal, E. Inderpreet, and E. J. Kaur, “Futuristic schematic image interpolation,” Ijarece, vol. 5, no. 5, pp. 1357–1360, 2016.
[22] S. Abbas, M. Z. Hussain, and M. Irshad, “Image interpolation by rational ball cubic B-spline representation and genetic algorithm,” Alexandria Eng. J., vol. 57, no. 2, pp. 931–937, 2018, doi: 10.1016/j.aej.2017.01.004.
Downloads
Published
How to Cite
Issue
Section
License

JUITA: Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.