Data Mining for Potential Customer Segmentation in the Marketing Bank Dataset
DOI:
https://doi.org/10.30595/juita.v9i1.7983Keywords:
data mining, bank marketing, SMOTEAbstract
Direct marketing is an effort made by the Bank to increase sales of its products and services, but the Bank sometimes has to contact a customer or prospective customer more than once to ascertain whether the customer or prospective customer is willing to subscribe to a product or service. To overcome this ineffective process several data mining methods are proposed. This study compares several data mining methods such as Naïve Bayes, K-NN, Random Forest, SVM, J48, AdaBoost J48 which prior to classification the SMOTE pre-processing technique was done in order to eliminate the class imbalance problem in the Bank Marketing dataset instance. The SMOTE + Random Forest method in this study produced the highest accuracy value of 92.61%.References
[1] S. Abbas, “Deposit subscribe Prediction using Data Mining Techniques based Real Marketing Dataset,” Int. J. Comput. Appl., 2015.
[2] T. Parlar and S. K. Acaravci, “Using Data Mining Techniques for Detecting the Important Features of the Bank Direct Marketing Data,” Int. J. Econ. Financ. Issues, vol. 7, no. 2, pp. 692–696, 2017.
[3] S. Moro, R. M. S. Laureano, and P. Cortez, “Using data mining for bank direct marketing: An application of the CRISP-DM methodology,” ESM 2011 - 2011 Eur. Simul. Model. Conf. Model. Simul. 2011, no. Figure 1, pp. 117–121, 2011.
[4] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the success of bank telemarketing,” Decis. Support Syst., vol. 62, pp. 22–31, 2014.
[5] Maghfirah, T. B. Adji, and N. A. Setiawan, “Menggunakan Data Mining Untuk Segmentasi Customer Pada Bank Untuk Meningkatkan Customer Relationship Management (CRM) Dengan Metode Klasifikasi (Agoritma J-48, Zero-R Dan Naive Bayes),” SNST ke-6, pp. 65–70, 2015.
[6] R. Vaidehi, “Predictive Modeling to Improve Success Rate of Bank Direct Marketing Campaign,” Int. J. Manag. Bus. Stud., vol. 6, no. 1, pp. 22–24, 2016.
[7] A. N. Rais, “Integrasi SMOTE Dan Ensemble AdaBoost Untuk Mengatasi Imbalance Class Pada Data Bank Direct Marketing,” J. Inform., vol. 6, no. 2, pp. 278–285, 2019.
[8] A. Lawi, A. A. Velayaty, and Z. Zainuddin, “On identifying potential direct marketing consumers using adaptive boosted support vector machine,” Proc. 2017 4th Int. Conf. Comput. Appl. Inf. Process. Technol. CAIPT 2017, vol. 2018-Janua, pp. 1–4, 2018.
[9] J. Zhang, “Analysis of Neural Network on Bank Marketing Data Dataset Pre-processing,” Coll. Comput. Sci., 2018.
[10] W. P. K. N. V. C. K. W. B. Lawrence O. Hall, “SMOTE: Synthetic Minority Over-sampling Technique Nitesh,” J. Artif. Intell. Res., no. Sept. 28, pp. 321–357, 2002.
[11] J. Sun, H. Li, H. Fujita, B. Fu, and W. Ai, “Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting,” Inf. Fusion, vol. 54, no. December 2018, pp. 128–144, 2020.
[12] F. M. A. Rossi Azmatul Barro, Itasia Dina Sulvianti, “Penerapan Synthetic Minority Oversampling Technique (Smote) Terhadap Data Tidak Seimbang Pada Pembuatan Model Komposisi Jamu,” Xplore J. Stat., vol. 1, no. 1, pp. 1–6, 2013.
[13] S. Muthuselvan, S. Rajapraksh, K. Somasundaram, and K. Karthik, “Classification of Liver Patient Dataset Using Machine Learning Algorithms,” Int. J. Eng. Technol., vol. 7, no. 3.34, p. 323, 2018.
[14] C. Anam and H. B. Santoso, “Perbandingan Kinerja Algoritma C4 . 5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa,” J. Ilm. Ilmu-Ilmu Tek., vol. 8, no. 1, pp. 13–19, 2018.
[15] G. Rahangdale, M. Ahirwar, and M. Motwani, “Application of k-NN and Naïve Bayes Algorithm in Banking and Insurance Domain,” Int. J. Comput. Sci. Issues, vol. 13, no. 5, pp. 69–75, 2016.
[16] I. Oktanisa et al., “Perbandingan Teknik Klasifikasi Dalam Data Mining Untuk Bank a Comparison of Classification Techniques in Data Mining for,” vol. 5, no. 5, pp. 567–576, 2018.
[17] Y. E. Kurniawati, A. E. Permanasari, and S. Fauziati, “Comparative study on data mining classification methods for cervical cancer prediction using pap smear results,” Proc. 2016 1st Int. Conf. Biomed. Eng. Empower. Biomed. Technol. Better Futur. IBIOMED 2016, pp. 1–5, 2017.
[18] H. Liu, H. Q. Tian, Y. F. Li, and L. Zhang, “Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions,” Energy Convers. Manag., vol. 92, pp. 67–81, 2015.
Downloads
Published
How to Cite
Issue
Section
License

JUITA: Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.