Pharmacognostic specifications and the antioxidant activity of Curcuma comosa Roxb. crude drugs

Authors

  • Dwi Hartanti Fakultas Farmasi, Universitas Muhammadiyah Purwokerto
  • Worawan Kitphati Faculty of Pharmacy, Mahidol University
  • Penchom Peungvicha Faculty of Pharmacy, Mahidol University
  • Nutputsorn Chatsumpun Faculty of Pharmacy, Mahidol University

DOI:

https://doi.org/10.30595/pharmacy.v19i1.13782

Keywords:

antioxidant, crude drugs, curcuma comosa, pharmacognostic specifications

Abstract

Curcuma comosa Roxb. is popularly used to treat gynecological problems but has no official monograph in the Thai Herbal Pharmacopeia (THP). This study characterized the selected pharmacognostic and physicochemical specifications and antioxidant potentials of C. comosa crude drugs. The pharmacognostic and physicochemical properties of two kinds of crude drugs were characterized according to the WHO quality control methods for herbal materials. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), and total phenolic content (TPC) were evaluated as per the standard method. The microscopic observation showed relatively large-sized starch granules, cortical parenchyma, vessel, and sclerenchyma fibre. The thin-layer chromatography (TLC) profile demonstrated distinct separation with two major spots. The physicochemical evaluations specified as follow: moisture (8.87±1.37%), total ash (2.35±0.12%), acid-insoluble ash (0.80±0.08%), volatile oil (1.01±0.03%), water-soluble extractable (16.01±0.95%), and ethanol-soluble extractable (17.74±1.56%). The DPPH scavenging activity, FRAP, and TPC of the crude drugs were 765.56±80.50 mM Trolox equivalent (TE)/g dry weight (DW), 505.42±22.44 mM TE/g DW, and 46.09±2.27 mg Gallic acid equivalent (GAE)/g DW. This study specified quality parameters of C. comosa crude drugs that might serve as the reference for the quality control purpose.

Author Biography

Dwi Hartanti, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto

References

Agarwal, M., Rai, V., Khatoon, S., Mehrotra, S., 2014. Effect of microbial load on therapeutically active constituent glycyrrhizin of Glycyrrhiza glabra L. Indian J. Tradit. Knowl. 13, 319–324.

Alam, F., Saqib, Q.N.U., 2015. Pharmacognostic study and development of quality control parameters for fruit, bark and leaf of Zanthoxylum armatum (Rutaceae). Anc. Sci. Life2 34, 147–155.

Boonmee, A., Srisomsap, C., Karnchanatat, A., Sangvanicha, P., 2011. An antioxidant protein in Curcuma comosa Roxb. rhizomes. Food Chem. 124, 476–480. https://doi.org/10.1016/j.foodchem.2010.06.057.

Burapan, S., Kim, M., Paisooksantivatana, Y., Eser, B.E., Han, J., 2020. Thai Curcuma species: Antioxidant and bioactive compounds. Food 9, article ID 1219. https://doi.org/10.3390/foods9091219.

Chawalitpong, S., Sornkaew, N., Suksamrarn, A., Palaga, T., 2016. Diarylheptanoid from Curcuma comosa Roxb. suppresses RANKL-induced osteoclast differentiation by decreasing NFATc1 and c-Fos expression via MAPK pathway. Eur. J. Pharmacol. 788, 351–359. https://doi.org/10.1016/j.ejphar.2016.08.012.

Chen, J., Xu, Y., Wei, G., Liao, S., Zhang, Y., Huang, W., Yuan, L., Wang, Y., 2015. Chemotypic and genetic diversity in Epimedium sagittatum from different geographical regions of China. Phytochemistry 116, 180–187. https://doi.org/10.1016/j.phytochem.2015.04.005.

Das, C., Bose, A., Mallick, S., Das, D., 2019. Development of standardization parameters of crude drugs used in Ayurvedic Balarista formulation. Orient. Pharm. Exp. Med. 19, 455–467. https://doi.org/10.1007/s13596-019-00386-w.

George, M., Britto, S.J., Arulappan, T., 2014. Pharmacognostic and phytochemical evaluation of Curcuma aeruginosa Roxb. World J. Pharm. Res. 3, 1042–1057.

Habibie, H., Heryanto, R., Rafi, M., Darusman, L.K., 2017. Development of quality control method for glucofarmaka antidiabetic jamu by HPLC fingerprint analysis. Indones. J. Chem. 17, 79–85. https://doi.org/10.22146/ijc.23616

Ichim, M.C., Häser, A., Nick, P., 2020. Microscopic authentication of commercial herbal products in the globalized market: Potential and limitations. Front. Pharmacol. 11, article ID 876. https://doi.org/10.3389/fphar.2020.00876.

Malaysian MoH, 2016. Malaysian Herbal Monograph 2015. Institute for Medical Research, Kuala Lumpur.

Mukhi, S., Bose, A., Panda, P., Rao, M.M., 2016. Pharmacognostic, physicochemical and chromatographic characterization of Samasharkara Churna. J. Ayurveda Integr. Med. 7, 88–99. https://doi.org/10.1016/j.jaim.2015.11.004.

Niumsakul, S., Hirunsaree, A., Wattanapitayakul, S., Junsuwanitch, N., Prapanupun, K., 2007. An antioxidative and cytotoxic substance extracted from Curcuma comosa Roxb. J. Thai Tradit. Altern. Med. 5, 24–29.

Pintatum, A., Maneerat, W., Logie, E., Tuenter, E., Sakavitsi, M.E., Pieters, L., Berghe, W. Vanden, Sripisut, T., Deachathai, S., Laphookhieo, S., 2020. In vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species and the isolation of compounds from Curcuma aromatica rhizome. Biomolecules 10, article ID 799. https://doi.org/10.3390/biom10050799.

Qin, K., Wang, B., Li, W., Cai, H., Chen, D., Liu, X., Yin, F., Ca, B., 2015. Quality assessment of raw and processed Arctium lappa L. through multicomponent quantification, chromatographic fingerprint, and related chemometric analysis. J. Sep. Sci. 38, 1491–1498. https://doi.org/10.1002/jssc.201401299.

Safitri, A., Batubara, I., Khumaida, N., 2017. Thin layer chromatography fingerprint, antioxidant, and antibacterial activities of rhizomes, stems, and leaves of Curcuma aeruginosa Roxb. J. Phys. Conf. Ser. 835, 012014. https://doi.org/10.1088/1742-6596/835/1/012014.

Sirirugsa, P., Larsen, K., Maknoi, C., 2007. The genus Curcuma L. (Zingiberaceae): Distribution and classification with reference to species diversity in Thailand. Gard. Bull. Singapore 59, 203–220.

Sutjarit, N., Thongon, N., Weerachayaphorn, J., Piyachaturawat, P., Suksamrarn, A., Suksen, K., Papachristou, D.J., Blair, H.C., 2020. Inhibition of adipogenic differentiation of human bone marrow-derived mesenchymal stem cells by a phytoestrogen diarylheptanoid from Curcuma comosa. J. Agric. Food Chem. 68, 9993−10002. https://doi.org/10.1021/acs.jafc.0c04063.

Tanvir, E.M., Hossen, M.S., Hossain, M.F., Afroz, R., Gan, S.H., Khalil, M.I., Karim, N., 2017. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J. Food Qual. 2017, article ID 8471785. https://doi.org/10.1155/2017/8471785.

Thai MoPH, 2018. Thai Herbal Pharmacopeia 2018. Department of Medical Sciences, Bangkok.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D.H., 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003.

Thongon, N., Boonmuen, N., Suksen, K., Wichit, P., Chairoungdua, A., Tuchinda, P., Suksamrarn, A., Winuthayanon, W., Piyachaturawat, P., 2017. Selective estrogen receptor modulator (SERM)-like activities of diarylheptanoid, a phytoestrogen from Curcuma comosa, in breast cancer cells, pre-osteoblast cells, and rat uterine tissues. J. Agric. Food Chem. 65, 3490−3496. https://doi.org/10.1021/acs.jafc.7b00769.

Vattanarongkup, J., Piyachaturawat, P., Tuchinda, P., Sanvarinda, P., Sanvarinda, Y., Jantaratnotai, N., 2016. Protective effects of a diarylheptanoid from Curcuma comosa against hydrogen peroxide-induced astroglial cell death. Planta Med. 82, 1456–1462. https://doi.org/10.1055/s-0042-109173.

Verma, D., Srivastava, S., Singh, V., Rawat, A., 2010. Pharmacognostic evaluation of Curcuma caesia Roxb. rhizome. Nat. Prod. Sci. 16, 107–110.

Downloads

Published

2023-01-19

How to Cite

Hartanti, D., Kitphati, W., Peungvicha, P., & Chatsumpun, N. (2023). Pharmacognostic specifications and the antioxidant activity of Curcuma comosa Roxb. crude drugs. PHARMACY: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia), 19(1), 159–170. https://doi.org/10.30595/pharmacy.v19i1.13782

Most read articles by the same author(s)

<< < > >>