Pharmacognostic specifications and the antioxidant activity of Curcuma comosa Roxb. crude drugs
DOI:
https://doi.org/10.30595/pharmacy.v19i1.13782Keywords:
antioxidant, crude drugs, curcuma comosa, pharmacognostic specificationsAbstract
Curcuma comosa Roxb. is popularly used to treat gynecological problems but has no official monograph in the Thai Herbal Pharmacopeia (THP). This study characterized the selected pharmacognostic and physicochemical specifications and antioxidant potentials of C. comosa crude drugs. The pharmacognostic and physicochemical properties of two kinds of crude drugs were characterized according to the WHO quality control methods for herbal materials. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), and total phenolic content (TPC) were evaluated as per the standard method. The microscopic observation showed relatively large-sized starch granules, cortical parenchyma, vessel, and sclerenchyma fibre. The thin-layer chromatography (TLC) profile demonstrated distinct separation with two major spots. The physicochemical evaluations specified as follow: moisture (8.87±1.37%), total ash (2.35±0.12%), acid-insoluble ash (0.80±0.08%), volatile oil (1.01±0.03%), water-soluble extractable (16.01±0.95%), and ethanol-soluble extractable (17.74±1.56%). The DPPH scavenging activity, FRAP, and TPC of the crude drugs were 765.56±80.50 mM Trolox equivalent (TE)/g dry weight (DW), 505.42±22.44 mM TE/g DW, and 46.09±2.27 mg Gallic acid equivalent (GAE)/g DW. This study specified quality parameters of C. comosa crude drugs that might serve as the reference for the quality control purpose.
References
Agarwal, M., Rai, V., Khatoon, S., Mehrotra, S., 2014. Effect of microbial load on therapeutically active constituent glycyrrhizin of Glycyrrhiza glabra L. Indian J. Tradit. Knowl. 13, 319–324.
Alam, F., Saqib, Q.N.U., 2015. Pharmacognostic study and development of quality control parameters for fruit, bark and leaf of Zanthoxylum armatum (Rutaceae). Anc. Sci. Life2 34, 147–155.
Boonmee, A., Srisomsap, C., Karnchanatat, A., Sangvanicha, P., 2011. An antioxidant protein in Curcuma comosa Roxb. rhizomes. Food Chem. 124, 476–480. https://doi.org/10.1016/j.foodchem.2010.06.057.
Burapan, S., Kim, M., Paisooksantivatana, Y., Eser, B.E., Han, J., 2020. Thai Curcuma species: Antioxidant and bioactive compounds. Food 9, article ID 1219. https://doi.org/10.3390/foods9091219.
Chawalitpong, S., Sornkaew, N., Suksamrarn, A., Palaga, T., 2016. Diarylheptanoid from Curcuma comosa Roxb. suppresses RANKL-induced osteoclast differentiation by decreasing NFATc1 and c-Fos expression via MAPK pathway. Eur. J. Pharmacol. 788, 351–359. https://doi.org/10.1016/j.ejphar.2016.08.012.
Chen, J., Xu, Y., Wei, G., Liao, S., Zhang, Y., Huang, W., Yuan, L., Wang, Y., 2015. Chemotypic and genetic diversity in Epimedium sagittatum from different geographical regions of China. Phytochemistry 116, 180–187. https://doi.org/10.1016/j.phytochem.2015.04.005.
Das, C., Bose, A., Mallick, S., Das, D., 2019. Development of standardization parameters of crude drugs used in Ayurvedic Balarista formulation. Orient. Pharm. Exp. Med. 19, 455–467. https://doi.org/10.1007/s13596-019-00386-w.
George, M., Britto, S.J., Arulappan, T., 2014. Pharmacognostic and phytochemical evaluation of Curcuma aeruginosa Roxb. World J. Pharm. Res. 3, 1042–1057.
Habibie, H., Heryanto, R., Rafi, M., Darusman, L.K., 2017. Development of quality control method for glucofarmaka antidiabetic jamu by HPLC fingerprint analysis. Indones. J. Chem. 17, 79–85. https://doi.org/10.22146/ijc.23616
Ichim, M.C., Häser, A., Nick, P., 2020. Microscopic authentication of commercial herbal products in the globalized market: Potential and limitations. Front. Pharmacol. 11, article ID 876. https://doi.org/10.3389/fphar.2020.00876.
Malaysian MoH, 2016. Malaysian Herbal Monograph 2015. Institute for Medical Research, Kuala Lumpur.
Mukhi, S., Bose, A., Panda, P., Rao, M.M., 2016. Pharmacognostic, physicochemical and chromatographic characterization of Samasharkara Churna. J. Ayurveda Integr. Med. 7, 88–99. https://doi.org/10.1016/j.jaim.2015.11.004.
Niumsakul, S., Hirunsaree, A., Wattanapitayakul, S., Junsuwanitch, N., Prapanupun, K., 2007. An antioxidative and cytotoxic substance extracted from Curcuma comosa Roxb. J. Thai Tradit. Altern. Med. 5, 24–29.
Pintatum, A., Maneerat, W., Logie, E., Tuenter, E., Sakavitsi, M.E., Pieters, L., Berghe, W. Vanden, Sripisut, T., Deachathai, S., Laphookhieo, S., 2020. In vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species and the isolation of compounds from Curcuma aromatica rhizome. Biomolecules 10, article ID 799. https://doi.org/10.3390/biom10050799.
Qin, K., Wang, B., Li, W., Cai, H., Chen, D., Liu, X., Yin, F., Ca, B., 2015. Quality assessment of raw and processed Arctium lappa L. through multicomponent quantification, chromatographic fingerprint, and related chemometric analysis. J. Sep. Sci. 38, 1491–1498. https://doi.org/10.1002/jssc.201401299.
Safitri, A., Batubara, I., Khumaida, N., 2017. Thin layer chromatography fingerprint, antioxidant, and antibacterial activities of rhizomes, stems, and leaves of Curcuma aeruginosa Roxb. J. Phys. Conf. Ser. 835, 012014. https://doi.org/10.1088/1742-6596/835/1/012014.
Sirirugsa, P., Larsen, K., Maknoi, C., 2007. The genus Curcuma L. (Zingiberaceae): Distribution and classification with reference to species diversity in Thailand. Gard. Bull. Singapore 59, 203–220.
Sutjarit, N., Thongon, N., Weerachayaphorn, J., Piyachaturawat, P., Suksamrarn, A., Suksen, K., Papachristou, D.J., Blair, H.C., 2020. Inhibition of adipogenic differentiation of human bone marrow-derived mesenchymal stem cells by a phytoestrogen diarylheptanoid from Curcuma comosa. J. Agric. Food Chem. 68, 9993−10002. https://doi.org/10.1021/acs.jafc.0c04063.
Tanvir, E.M., Hossen, M.S., Hossain, M.F., Afroz, R., Gan, S.H., Khalil, M.I., Karim, N., 2017. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J. Food Qual. 2017, article ID 8471785. https://doi.org/10.1155/2017/8471785.
Thai MoPH, 2018. Thai Herbal Pharmacopeia 2018. Department of Medical Sciences, Bangkok.
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D.H., 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003.
Thongon, N., Boonmuen, N., Suksen, K., Wichit, P., Chairoungdua, A., Tuchinda, P., Suksamrarn, A., Winuthayanon, W., Piyachaturawat, P., 2017. Selective estrogen receptor modulator (SERM)-like activities of diarylheptanoid, a phytoestrogen from Curcuma comosa, in breast cancer cells, pre-osteoblast cells, and rat uterine tissues. J. Agric. Food Chem. 65, 3490−3496. https://doi.org/10.1021/acs.jafc.7b00769.
Vattanarongkup, J., Piyachaturawat, P., Tuchinda, P., Sanvarinda, P., Sanvarinda, Y., Jantaratnotai, N., 2016. Protective effects of a diarylheptanoid from Curcuma comosa against hydrogen peroxide-induced astroglial cell death. Planta Med. 82, 1456–1462. https://doi.org/10.1055/s-0042-109173.
Verma, D., Srivastava, S., Singh, V., Rawat, A., 2010. Pharmacognostic evaluation of Curcuma caesia Roxb. rhizome. Nat. Prod. Sci. 16, 107–110.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).