Investigasi Kinerja Luaran Listrik Modul Thermoelectric Menggunakan Pemanas Heater dan Pendingin Air

Bagus Radiant Utomo, Hadi Kusnanto, Nugroho Tri Atmoko, Desi Gustiani, Hendy Lilih Wjayanto

Abstract


Modul thermoelectric merupakan alat konversi energi yang mengubah perbedaan selisih suhu menjadi listrik secara langsung, melalui prinsip efek seebeck. Thermoelectric memiliki keuntungan mengubah listrik secara langsung dan thermoelectric banyak digunakan di beberapa aplikasi teknik, dan saat ini banyak negara yang mulai memproduksi, mengembangkan dan menjual produk modul thermoelectric secara komersial. Tujuan penelitian ini adalah untuk menginvestigasi kinerja luaran tegangan terbuka, koefisien seebeck, tegangan tertutup, arus, dan daya dengan menggunakan pemanas heater dan pendingin air pada tipe modul thermoelectric  tipe TEC 12706, TEC 12715, dan TEG SP 1848 27145 yang dijual secara komersial di Indonesia. Penelitian dilakukan dengan menempatkan modul thermoelectric pada penjepit screw dengan tekanan 1 Mpa. Penelitian dilakukan dalam 2 kali pemanasan, percobaan pertama pemanasan dilakukan tanpa menggunakan beban luaran, dan percobaan kedua pemanasan dilakukan menggunakan beban luaran lampu 4,8 VDC 0,5 A. Sistem pemanasan menggunakan plat heater dengan suhu maksimal 150-151 °C dan sistem pendingin menggunakan water block dengan laju aliran air 150 l/jam secara konstan. Hasil penelitian menunjukkan keluaran listrik tertinggi diperoleh pada modul thermoelectric tipe TEG SP 1848 27145, di ikuti TEC 12715, dan TEC 12706. Kinerja keluaran modul thermoelectric tersebut dipengaruhi oleh nilai koefisien seebeck, dimana semakin tinggi nilai koefisien seebeck maka akan menghasilkan keluaran listrik yang semakin tinggi.

References


[1] M. E. Demir and I. Dincer, “Development of an integrated hybrid solar thermal power system with thermoelectric generator for desalination and power production,” Desalination, vol. 404, pp. 59–71, 2017, doi: 10.1016/j.desal.2016.10.016.

[2] J. Sladek, V. Sladek, M. Repka, and E. Pan, “A novel gradient theory for thermoelectric material structures,” Int. J. Solids Struct., vol. 206, pp. 292–303, 2020, doi: 10.1016/j.ijsolstr.2020.09.023.

[3] C. Bobean and V. Pavel, “The study and modeling of a thermoelectric generator module,” 2013 - 8th Int. Symp. Adv. Top. Electr. Eng. ATEE 2013, 2013, doi: 10.1109/ATEE.2013.6563498.

[4] A. Shakouri, “Recent Developments in Semiconductor Thermoelectric Physics and Materials,” 2011, doi: 10.1146/annurev-matsci-062910-100445.

[5] L. Lin, Y. F. Zhang, H. B. Liu, J. H. Meng, W. H. Chen, and X. D. Wang, “A new configuration design of thermoelectric cooler driven by thermoelectric generator,” Appl. Therm. Eng., vol. 160, no. July, p. 114087, 2019, doi: 10.1016/j.applthermaleng.2019.114087.

[6] L. E. Bell, “Cooling, Heating, Generating Heat with and Recovering Waste Thermoelectric,” Science (80-. )., vol. 321, no. 5895, pp. 1457–1461, 2008.

[7] S. M. Pourkiaei et al., “Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials,” Energy, vol. 186, p. 115849, 2019, doi: 10.1016/j.energy.2019.07.179.

[8] F. Frobenius, G. Gaiser, U. Rusche, and B. Weller, “Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles,” J. Electron. Mater., vol. 45, no. 3, pp. 1433–1440, 2016, doi: 10.1007/s11664-015-4059-z.

[9] M. T. Børset, Ø. Wilhelmsen, S. Kjelstrup, and O. S. Burheim, “Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling,” Energy, vol. 118, pp. 865–875, 2017, doi: 10.1016/j.energy.2016.10.109.

[10] H. L. Wijayanto, K. W. Wirakusuma, and N. T. Atmoko, “Pengaruh Variasi Daya Pompa pada System Pendinginan TEG terhadap Tegangan yang Dihasilkan TEG,” vol. 22, no. 1, pp. 477–481, 2022, doi: 10.33087/jiubj.v22i1.2017.

[11] A. Hakim and J. H. Lim, “The effect of temperature mismatch on interconnected thermoelectric module for power generation,” AIP Conf. Proc., vol. 2233, no. May, 2020, doi: 10.1063/5.0001549.

[12] “H-IZ Technology.” https://hi-z.com/ (accessed Jun. 24, 2022).

[13] “Komatsu.” https://www.kelk.co.jp/english/ (accessed Jun. 24, 2022).

[14] “Thermonamic.” http://www.thermonamic.com/ (accessed Jun. 24, 2022).

[15] H. Jouhara et al., “Thermoelectric generator (TEG) technologies and applications,” Int. J. Thermofluids, vol. 9, 2021, doi: 10.1016/j.ijft.2021.100063.

[16] G. Andrapica, R. I. Mainil, and A. Aziz, “Pengujian Thermoelectric Generator Sebagai Pembangkit Listrik Dengan Sisi Dingin Menggunakan Air Bertemperatur 10 oc,” J. Sains dan Teknol., vol. 14, no. 2, pp. 45–50, 2017, [Online]. Available: https://ejournal.unri.ac.id/index.php/JST/article/view/3983/3867.

[17] T. W. B. Riyadi, B. R. Utomo, M. Effendy, A. T. Wijayanta, and H. H. Al-Kayiem, “Effect of thermal cycling with various heating rates on the performance of thermoelectric modules,” Int. J. Therm. Sci., vol. 178, no. March, p. 107601, 2022, doi: 10.1016/j.ijthermalsci.2022.107601.

[18] R. Merienne, J. Lynn, E. McSweeney, and S. M. O’Shaughnessy, “Thermal cycling of thermoelectric generators: The effect of heating rate,” Appl. Energy, vol. 237, no. November 2018, pp. 671–681, 2019, doi: 10.1016/j.apenergy.2019.01.041.

[19] Y. Shi, Y. Wang, D. Mei, B. Feng, and Z. Chen, “Design and Fabrication of Wearable Thermoelectric Generator Device for Heat Harvesting,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 373–378, 2018, doi: 10.1109/LRA.2017.2734241.

[20] S. Memon and K. N. Tahir, “Experimental and analytical simulation analyses on the electrical performance of thermoelectric generator modules for direct and concentrated quartz-halogen heat harvesting,” Energies, vol. 11, no. 12, 2018, doi: 10.3390/en11123315.

[21] Z. Ma, X. Wang, and A. Yang, “Influence of temperature on characters of thermoelectric generators based on test bed,” J. Nanomater., vol. 2014, 2014, doi: 10.1155/2014/719576.

[22] M. Algusri and D. Redantan, “Analysis of peltier characteristic and cold side treatment for thermoelectric generator module at brick kiln furnace,” Proc. - 2018 2nd Int. Conf. Electr. Eng. Informatics Towar. Most Effic. W. Mak. Deal. with Futur. Electr. Power Syst. Big Data Anal. ICon EEI 2018, no. October, pp. 134–139, 2018, doi: 10.1109/ICon-EEI.2018.8784141.


Full Text: PDF

DOI: 10.30595/cerie.v2i2.14019

DOI (PDF): http://dx.doi.org/10.30595/cerie.v2i2.14019.g5025

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2774-8006