Ballistic Performance Anti-Projectile Of Alumina And Weldox 460 E with Finite Element Method

Dessy Ade Pratiwi, Tri Widodo Besar Riyadi, David Setiadhi, Agus Hariyanto

Abstract


This research aims to determine the effect of the panel configuration which has the strongest resistance and to analyze the ballistic toughness of the Al2O3 and Weldox 460 E Steel panel configurations. The criteria to be looked for are the Depth of Penetration, Deflection and Final Projectile Length. To determine the accuracy of this study, a verification of the simulation research previously conducted by Dey et al. The method used is based on simulation with the finite element method. The software used is ANSYS/Explicit Dynamic solver AUTODYN 18.1. The modeling used in this study is simplified into 2D Axisymmetric. Alumina and Weldox 460 E steel panel configuration variations that will be used in this study. There are 7 variations of the panel configuration used, namely B12, A5B5, A5B10, A10B5, A10B10, A12B12 and A15B15. Alumina material as the front panel, while Weldox 460 E as the back panel. In calculating the mechanical behavior of the material, while the Alumina material uses the Johnson Holmquist (JH2) Strength parameter. And then, the Weldox 460 E material uses Johnson and Cook parameters. The results obtained indicate that the A12B12 and A15B15 panel configurations are able to withstand projectiles. The A12B12 panel configuration has a depth of penetration value of 23 mm, a deflection value of 4.3 mm and a Vbl value of 954.69 m/s. while the best panel configuration is A15B15 with a depth of penetration value of 21 mm, a deflection value of 1.4 mm and a Vbl value of 1345.9 m/s. then the conclusion of this study shows that the A15B15 panel configuration is the best panel configuration that is able to withstand projectiles.


References


[1] H. Purnomo, F. H. . Saleh, J. Sulistio, and F. Kurnia, Sejarah dan Perancangan body armor. 2018.

[2] P. A. Prabowo, I. Haryanto, M. Jurusanteknikmesin, D. Jurusanteknikmesin, and B. Balistik, “Analisa Kecepatan Sisa Proyektil Berhidung Tumpul Yang Ditembakkan Pada Baja Weldox 460 E,” J. Tek. Mesin Undip, vol. 2, no. 1, pp. 77–84, 2014.

[3] A. Ruys, Alumina in lightweight body armor. 2019. doi: 10.1016/b978-0-08-102442-3.00011-7.

[4] A. Barrett, Soren; Christiansen, Rasmus; Otham, “BALLISTIC PROPERTIES OF MATERIAL,” 2016.

[5] S. Dey, T. Børvik, O. S. Hopperstad, J. R. Leinum, and M. Langseth, “The effect of target strength on the perforation of steel plates using three different projectile nose shapes,” Int. J. Impact Eng., vol. 30, no. 8–9, pp. 1005–1038, 2004, doi: 10.1016/j.ijimpeng.2004.06.004.

[6] R. Chi, A. Serjouei, I. Sridhar, and G. E. B. Tan, “Ballistic impact on bi-layer alumina/aluminium armor: A semi-analytical approach,” Int. J. Impact Eng., vol. 52, pp. 37–46, 2013, doi: 10.1016/j.ijimpeng.2012.10.001.

[7] Z. N. Zhao et al., “Enhanced bi-layer mosaic armor: experiments and simulation,” Ceram. Int., vol. 46, no. 15, pp. 23854–23866, 2020, doi: 10.1016/j.ceramint.2020.06.162.

[8] M. A. Iqbal, G. Gupta, and N. K. Gupta, “3D numerical simulations of ductile targets subjected to oblique impact by sharp nosed projectiles,” Int. J. Solids Struct., vol. 47, no. 2, pp. 224–237, 2010, doi: 10.1016/j.ijsolstr.2009.09.032.

[9] Y. Xiao, H. Dong, J. Zhou, and J. Wang, “Studying normal perforation of monolithic and layered steel targets by conical projectiles with SPH simulation and analytical method,” Eng. Anal. Bound. Elem., vol. 75, no. September 2016, pp. 12–20, 2017, doi: 10.1016/j.enganabound.2016.11.004.

[10] R. Zhang et al., “Influence of prestress on ballistic performance of bi-layer ceramic composite armors: Experiments and simulations,” Compos. Struct., vol. 227, no. July, 2019, doi: 10.1016/j.compstruct.2019.111258.

[11] S. Dey, O. S. Hopperstad, T. Børvik, and A. H. Clausen, “Constitutive relation and failure criterion for three structural steels at high strain rates,” Struct. Mater., vol. 11, pp. 427–436, 2002.

[12] M. S. Fadly, A. Purnowidodo, and P. H. Setyarini, “Karakteristik Fiber Metal Laminate Akibat Beban Impak Balistik Dari Peluru Kaliber 9 mm Full Metal Jacket (FMJ),” J. Rekayasa Mesin, vol. 12, no. 1, p. 103, 2021, doi: 10.21776/ub.jrm.2021.012.01.12.

[13] M. Grujicic, B. Pandurangan, and B. Entremont, “The role of adhesive in the ballistic / structural performance of ceramic / polymer – matrix composite hybrid armor,” J. Mater., vol. 41, pp. 380–393, 2012, doi: 10.1016/j.matdes.2012.05.023.

[14] C. Park and C. Cho, “Effect of high hardness armor plate sequences on ballistic impact response,” J. Korean Soc. Precis. Eng., vol. 34, no. 6, pp. 417–424, 2017, doi: 10.7736/KSPE.2017.34.6.417.

[15] G. R. Johnson and W. H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985, doi: 10.1016/0013-7944(85)90052-9.


Full Text: PDF

DOI: 10.30595/cerie.v3i1.15400

DOI (PDF): http://dx.doi.org/10.30595/cerie.v3i1.15400.g5579

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2774-8006