Studi Eksperimental Performa Photovoltaic Cell dengan Variasi Jenis Pendingin

Andi Ibrahim Soumi, Bagus Radiant Utomo, Nugroho Tri Atmoko, Edi Sarwono

Abstract


Energi matahari salah satu sumber energi yang dapat dikonversikan menjadi energi listrik melalui photovoltaic cell. Salah satu tujuan dari penelitian ini adalah mengetahui performa modul photovoltaic cell ketika menggunakan pendingin fan dan heat sinks. Pada penelitian ini menggunakan modul photovoltaic cell dan perangkat perangkat microcontroller menggunakan Arduino untuk menjalankan program sensor suhu dan daya listrik. Parameter yang diukur dalam pelitian ini meliputi suhu photovoltaic cell, tegangan, arus, dan daya yang dihasilkan photovoltaic cell. Pengujian dilakukan pada modul photovoltaic cell tanpa pendingin, photovoltaic dengan pendingin fan, dan photovoltaic dengan pendingin heat sinks. Pengujian dilakukan langsung di luar ruangan dan terkena sinar matahari langsung. Dari hasil pengujian ditunjukkan modul photovoltaic cell dengan menggunakan pendingin menghasilkan daya lebih tinggi dibandingkan modul photovoltaic cell tanpa pendingin.  Daya tertinggi yang dicapai photovoltaic cell dengan pendingin fan.


References


[1] Y. Zhang, C. Shen, C. Zhang, J. Pu, Q. Yang, and C. Sun, “A novel porous channel to optimize the cooling performance of PHOTOVOLTAIC modules,” Energy Built Environ., vol. 3, no. 2, pp. 210–225, 2022.

[2] T. Oderinwale and C. R. Mcinnes, “Enhancing photovoltaic energy generation and usage : Orbiting photovoltaic reflectors as alternative to energy storage,” Appl. Energy, vol. 317, no. April, p. 119154, 2022.

[3] N. T. Atmoko, I. Veza, T. Widodo, and B. Riyadi, “Study On The Energy Conversion In The Thermoelectric Liquefied Petroleum Gas Cooking Stove With Different Cooling Methods,” Int. J. Eng. Trends Technol., vol. 69, no. 1, pp. 185–193, 2021.

[4] K. Ranabhat, L. Patrikeev, A. A. evna Revina, K. Andrianov, V. Lapshinsky, and E. Sofronova, “An introduction to photovoltaic cell technology,” J. Appl. Eng. Sci., vol. 14, no. 4, pp. 481–491, 2016.

[5] B. R. Utomo et al., “Analisa Pengaruh Intensitas Cahaya terhadap Kinerja Modul Photovoltaic,” Creat. Res. Eng., vol. 2, no. 2, pp. 72–80, 2022.

[6] A. M. A. Soliman, H. Hassan, and S. Ookawara, “ScienceDirect ScienceDirect An experimental study of the performance of the photovoltaic cell with heat An experimental study of the performance of the photovoltaic cell with heat sink cooling system District Heating and Cooling cooling on Assessing feasibility,” Energy Procedia, vol. 162, pp. 127–135, 2019.

[7] N. Parkunam, L. Pandiyan, G. Navaneethakrishnan, and S. Arul, “Environmental Effects Experimental analysis on passive cooling of flat photovoltaic panel with heat sink and wick structure,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 0, no. 00, pp. 1–11, 2019.

[8] C. G. Popovici, S. V. Hudişteanu, T. D. Mateescu, and N. C. Cherecheş, “Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks,” Energy Procedia, vol. 85, no. November 2015, pp. 425–432, 2016.

[9] S. Khanna, K. S. Reddy, and T. K. Mallick, “Optimization of photovoltaic photovoltaic system integrated with phase change material,” Sol. Energy, vol. 163, no. January, pp. 591–599, 2018.

[10] M. Awad, A. Radwan, O. Abdelrehim, M. Emam, A. N. Shmroukh, and M. Ahmed, “Performance evaluation of concentrator photovoltaic systems integrated with a new jet impingement-microchannel heat sink and heat spreader,” Sol. Energy, vol. 199, no. February, pp. 852–863, 2020.

[11] I. A. Hasan, “Enhancement the Performance of PHOTOVOLTAIC Panel by Using Fins as Heat Sink,” Eng. Technol. J., vol. 36, no. 7A, 2018.

[12] E. Z. Ahmad, K. Sopian, A. Fazlizan, H. Jarimi, and A. Ibrahim, “Outdoor performance evaluation of a novel photovoltaic heat sinks to enhance power conversion efficiency and suhue uniformity,” Case Stud. Therm. Eng., vol. 31, no. June 2021, p. 101811, 2022.

[13] E. Z. Ahmad, A. Fazlizan, H. Jarimi, K. Sopian, and A. Ibrahim, “Enhanced heat dissipation of truncated multi-level fin heat sink (MLFHS) in case of natural convection for photovoltaic cooling,” Case Stud. Therm. Eng., vol. 28, no. October, p. 101578, 2021.

[14] Z. Peng, M. R. Herfatmanesh, and Y. Liu, “Cooled photovoltaic PHOTOVOLTAIC panels for output energy efficiency optimisation,” Energy Convers. Manag., vol. 150, pp. 949–955, 2017.

[15] H. Erol, M. Uçman, and Z. Kesilmiş, “The Effect of Fan Cooling on Photovoltaic Efficiency of PHOTOVOLTAIC Panels in Osmaniye Environment,” vol. 6, no. 3, pp. 29–33, 2017.

[16] Z. Syafiqah, N. A. M. Amin, Y. M. Irwan, M. Irwanto, W. Z. Leow, and A. R. Amelia, “Performance power evaluation of DC fan cooling system for PHOTOVOLTAIC panel by using ANSYS CFX,” AIP Conf. Proc., vol. 1885, 2017.

[17] M. Sharaf, M. S. Yousef, and A. S. Huzayyin, “Review of cooling techniques used to enhance the efficiency of photovoltaic power systems,” Environ. Sci. Pollut. Res., vol. 29, no. 18, pp. 26131–26159, 2022.

[18] S. Sargunanathan, A. Elango, and S. T. Mohideen, “Performance enhancement of photovoltaic photovoltaic cells using effective cooling methods: A review,” Renew. Sustain. Energy Rev., vol. 64, pp. 382–393, 2016.

[19] E. Garabitos Lara and F. Santos García, “Review on viability and implementation of residential PHOTOVOLTAIC-battery systems: Considering the case of Dominican Republic,” Energy Reports, vol. 7, pp. 8868–8899, 2021.

[20] A. Ouédraogo, B. Zouma, E. Ouédraogo, L. Guissou, and D. J. Bathiébo, “Individual efficiencies of a polycrystalline silicon photovoltaic cell versus suhue,” Results Opt., vol. 4, no. March, 2021.

[21] A. H. A. Salman, K. H. Hilal, and S. A. Ghadhban, “Enhancing performance of PHOTOVOLTAIC module using water flow through porous media,” Case Stud. Therm. Eng., vol. 34, no. March, p. 102000, 2022.

[22] Y. Zhao, S. Gong, C. Zhang, M. Ge, and L. Xie, “Performance analysis of a photovoltaic photovoltaic power generation system with spray cooling,” Case Stud. Therm. Eng., vol. 29, no. February 2021, p. 101723, 2022.

[23] A. Maleki, A. Haghighi, M. El Haj Assad, I. Mahariq, and M. Alhuyi Nazari, “A review on the approaches employed for cooling PHOTOVOLTAIC cells,” Sol. Energy, vol. 209, no. October 2019, pp. 170–185, 2020.

[24] M. Hasanuzzaman, A. B. M. A. Malek, M. M. Islam, A. K. Pandey, and N. A. Rahim, “Global advancement of cooling technologies for photovoltaic systems: A review,” Sol. Energy, vol. 137, pp. 25–45, 2016.

[25] E. Kermani, S. Dessiatoun, A. Shooshtari, and M. M. Ohadi, “Experimental Investigation of Heat Transfer Performance of a Manifold Microchannel Heat Sink for Cooling of Concentrated Photovoltaic Cells,” pp. 453–459, 2009.

[26] A. M. A. Soliman and H. Hassan, “An experimental work on the performance of photovoltaic cell cooled by flat heat pipe,” J. Therm. Anal. Calorim., vol. 146, no. 4, pp. 1883–1892, 2021.


Full Text: PDF

DOI: 10.30595/cerie.v3i2.16167

DOI (PDF): http://dx.doi.org/10.30595/cerie.v3i2.16167.g6057

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2774-8006