Freshwater Fish Classification Based on Image Representation Using K-Nearest Neighbor Method

Authors

  • Suwarsito Suwarsito Universitas Muhammadiyah Purwokerto
  • Hindayati Mustafidah Universitas Muhammadiyah Purwokerto
  • Tito Pinandita Universitas Muhammadiyah Purwokerto
  • Purnomo Purnomo <span lang="EN-US">UPTD-BIAT Kutasari, DKPP Purbalingga</span>

DOI:

https://doi.org/10.30595/juita.v10i2.15471

Keywords:

KNN, image, confusion matrix, freshwater fish

Abstract

Indonesia is a maritime and agricultural country with enormous world fishery potential. The large variety of fish is often confusing for ordinary people in recognizing types of fish, especially freshwater fish. It was stated that the types of freshwater fish often consumed by the Indonesian people are bawal (pomfret), betutu, gabus (cork), gurame (carp), mas (goldfish), lele (catfish), mujaer (tilapia), patin (asian catfish), tawes, and nila (tilapia nilotica). Some fish types have similar shapes, so it is tricky to tell them apart. Meanwhile, in the digitalization era today, Artificial Intelligence (AI)-based technology has become a demand in all areas of life. It is overgrowing, not apart from the fisheries sector. Therefore, in this study, the K-Nearest Neighbor (KNN) method was applied as one of the methods in AI to identify and classify freshwater fish species based on their images. The KNN method classifies new data into specific classes based on the distance between the new data and the closest k data through the learning process. This KNN model is built by preparing the dataset stages, separating the dataset into data-train and data-test with a ratio of 70%:30%, then building and testing the model. The dataset is freshwater fish images, totaling 100 images from 10 freshwater fish types. Model testing is done by measuring performance using a confusion matrix. Based on the test results, the model has an accuracy performance of 70%. Thus, KNN can be used as a model to identify freshwater fish species based on their image.

Author Biographies

Suwarsito Suwarsito, Universitas Muhammadiyah Purwokerto

Aquaculture

Hindayati Mustafidah, Universitas Muhammadiyah Purwokerto

Informatics Engineering

Tito Pinandita, Universitas Muhammadiyah Purwokerto

Informatics Engineering

References

[1] Wantimpres, Potensi Perikanan Indonesia. 2017. Accessed: Nov. 05, 2021. [Online]. Available: https://wantimpres.go.id/id/potensi-perikanan-indonesia/

[2] N. A. Romfiz, “Potensi Perikanan, Konsumsi Ikan, dan Kesejahteraan Nelayan,” https://news.detik.com/kolom/d-5521785/potensi-perikanan-konsumsi-ikan-dan-kesejahteraan-nelayan, 2021. (accessed Nov. 10, 2021).

[3] H. Mustafidah, S. Suwarsito, and E. Puspitasari, “Case-Based Reasoning System to Determine the Types of Fish Farming Based on Water Quality,” in 2020 Fifth International Conference on Informatics and Computing (ICIC), 2020, pp. 1–5.

[4] PintarPet, “Berkenalan dengan 23 Jenis-Jenis Ikan Air Tawar Populer di Indonesia,” https://petpintar.com/ikan/jenis-jenis-ikan-air-tawar, 2020. (accessed Nov. 09, 2021).

[5] Surya Mina Farm, “Mengenal Ikan Tawes (Barbonymus Goniono Bleeker),” https://www.bibitikan.net/mengenal-ikan-tawes-barbonymus-goniono-bleeker/, 2013. (accessed Nov. 05, 2021).

[6] P. M. D. K. H. P. BADAN KARANTINA IKAN, “Mengenal Ikan Betutu, Si Gabus Malas Berkhasiat Tinggi,” https://kkp.go.id/bkipm/artikel/9051-mengenal-ikan-betutu-si-gabus-malas-berkhasiat-tinggi, 2019. (accessed Nov. 06, 2021).

[7] ResepKoki, “10 Jenis Ikan Air Tawar di Indonesia Yang Sering Dikonsumsi,” https://resepkoki.id/10-jenis-ikan-air-tawar-di-indonesia-yang-sering-dikonsumsi/, 2021. (accessed Nov. 07, 2021).

[8] M. E. Auer, D. Guralnick, and I. Simonics, Teaching and Learning in a Digital World: Proceedings of the 20th International Conference on Interactive Collaborative Learning – Volume 2. Switzerland: Springer International Publishing, 2018.

[9] M. E. Auer, H. Hortsch, and P. Sethakul, "The Impact of the 4th Industrial Revolution on Engineering Education": Proceedings of the 22nd International Conference on Interactive Collaborative Learning (ICL2019) – Volume 2. Switzerland: Springer International Publishing, 2020.

[10] Kompasiana, “Peran Teknologi Dalam Pandemi Covid-19,” https://www.kompasiana.com/waju27020/5ea90c97d541df0aac6be9c2/peran-teknologi-dalam-pandemi-covid-19, 2020. (accessed May 30, 2020).

[11] A. D. Syafaati, “Revolusi Industri dari Generasi 1.0 hingga 4.0,” https://www.academia.edu/37491240/REVOLUSI_INDUSTRI_DARI_GENERASI_1.0_HINGGA_4.0, 2019. (accessed Feb. 19, 2019).

[12] T. P. Trappenberg, Fundamentals of Machine Learning. Oxford University Press, 2020. doi: 10.1093/oso/9780198828044.001.0001.

[13] S. Ray, “Commonly used Machine Learning Algorithms (with Python and R Codes),” https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/, 2017. (accessed Oct. 20, 2021).

[14] MATH VAULT, “Compendium of Mathematical Symbols,” https://mathvault.ca/hub/higher-math/math-symbols/, 2020. (accessed Nov. 10, 2021).

[15] M. A. Sofia, H. Mustafidah, and S. Suwarsito, “Basis Data Fuzzy Model Tahani untuk Menentukan Jenis Pakan Ikan Berdasarkan Harga dan Kandungan Gizi Bahan Baku Pakan,” JUITA (Jurnal Inform., vol. III, no. 3, pp. 143–155, 2015, doi: http://dx.doi.org/10.30595/juita.v3i3.870.

[16] S. Suwarsito and H. Mustafidah, “Determination of Feed Fish Price Based on Feed Formulation with Local Raw Materials using Fuzzy Logic Implementation,” Int. J. Fish. Aquat. Stud., vol. 3, no. 2, pp. 1–5, 2015.

[17] S. Suwarsito and H. Mustafidah, “Formulasi Pakan Ikan Menggunakan Sistem Pakar Metode Perunutan Maju,” in Prosiding Seminar Nasional Hasil - Hasil Penelitian dan Pengabdian LPPM Universitas Muhammadiyah Purwokerto, 2015.

[18] K. K. Widiartha and A. A. G. Ekayana, “Penentuan Jenis Ikan Air Tawar pada Lahan Budidaya Menggunakan Fuzzy Logic Berbasis Interface Microcontroller (Determination of Freshwater Fish Species in Cultivation Land Using Fuzzy Logic Based on Microcontroller Interface),” S@ CIES, vol. 7, no. 1, pp. 7–14, 2016, doi: https://doi.org/10.31598/sacies.v7i1.108.

[19] T. Ningsih, “Sistem Pendukung Keputusan Penentuan Jenis Ikan Air Tawar Untuk Usaha Pembesaran Menggunakan Metode ANP-PROMETHEE II (Studi Kasus Kabupaten Nganjuk).” Universitas Brawijaya, 2017.

[20] S. Suwarsito and H. Mustafidah, “Determination of Appropriate Fish Culture Method Based on Water Quality Using Expert System,” Adv. Sci. Lett., vol. 24, no. 12, pp. 9178–9181, 2018, doi: https://doi.org/10.1166/asl.2018.12120.

[21] A. A. Soebroto and S. Hartati, “Penentuan Jenis Ikan Air Tawar Untuk Usaha Pembesaran Menggunakan Multicriteria Decision Making (MCDM),” 2018.

[22] A. Azis, “IDENTIFIKASI JENIS IKAN MENGGUNAKAN MODEL HYBRID DEEP LEARNING DAN ALGORITMA KLASIFIKASI,” Sebatik, vol. 24, no. 2, pp. 201–206, 2020.

[23] A. Pariyandani, D. A. Larasati, E. P. Wanti, and M. Muhathir, “Klasifikasi Citra Ikan Berformalin Menggunakan Metode k-NN dan GLCM,” in Semantika (Seminar Nasional Teknik Informatika), 2019, vol. 2, no. 1, pp. 42–47.

[24] E. P. Wanti and M. Muhathir, “Pengidentifikasian Citra Ikan Berformalin Dengan Menggunakan Metode Multilayer Perceptron,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 5, no. 1, pp. 491–502, 2021, doi: http://dx.doi.org/10.30645/j-sakti.v5i1.342.

[25] R. E. Pawening, A. Z. Arifin, and A. Yuniarti, “Ekstraksi fitur berdasarkan deskriptor bentuk dan titik salien untuk klasifikasi citra ikan tuna,” 2016.

Downloads

Published

2022-11-14

How to Cite

Suwarsito, S., Mustafidah, H., Pinandita, T., & Purnomo, P. (2022). Freshwater Fish Classification Based on Image Representation Using K-Nearest Neighbor Method. JUITA: Jurnal Informatika, 10(2), 183–189. https://doi.org/10.30595/juita.v10i2.15471

Most read articles by the same author(s)

> >>