A New Approach in Query Expansion Methods for Improving Information Retrieval

Authors

  • Lasmedi Afuan Universitas Jenderal Soedirman
  • Ahmad Ashari Universitas Gadjah Mada
  • Yohanes Suyanto Universitas Gadjah Mada

DOI:

https://doi.org/10.30595/juita.v9i1.9657

Keywords:

query expansion, association rules, ontology, recall, precision, f-measure

Abstract

This research develops a new approach to query expansion by integrating Association Rules (AR) and Ontology. In the proposed approach, there are several steps to expand the query, namely (1) the document retrieval step; (2) the step of query expansion using AR; (3) the step of query expansion using Ontology. In the initial step, the system retrieved the top documents via the user's initial query. Next is the initial processing step (stopword removal, POS Tagging, TF-IDF). Then do a Frequent Itemset (FI) search from the list of terms generated from the previous step using FP-Growth. The association rules search by using the results of FI. The output from the AR step expanded using Ontology. The results of the expansion with Ontology use as new queries. The dataset used is a collection of learning documents. Ten queries used for the testing, the test results are measured by three measuring devices, namely recall, precision, and f-measure. Based on testing and analysis results,  integrating AR and Ontology can increase the relevance of documents with the value of recall, precision, and f-measure by 87.28, 79.07, and 82.85.

Author Biographies

Lasmedi Afuan, Universitas Jenderal Soedirman

Informatika

Ahmad Ashari, Universitas Gadjah Mada

Department of Computer Science and Electronics

Yohanes Suyanto, Universitas Gadjah Mada

Department of Computer Science and Electronics

References

[1] B. M. Sanderson and W. B. Croft, “The History of Information Retrieval Research,” IEEE, vol. 100, pp. 1444–1451, 2012.

[2] P. Castells, M. Fernandez, D. Vallet, M. Fernández, and D. Vallet, “An Adaptation of the Vector-Space Model for Ontology-Based Information Retrieval,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 2, pp. 261–272, 2007.

[3] L. Afuan, A. Ashari, and Y. Suyanto, “THE ONTOLOGY APPROACH FOR INFORMATION,” J. Theor. Appl. Inf. Technol., vol. 97, no. 7, 2019.

[4] M. Fernández, I. Cantador, V. López, D. Vallet, P. Castells, and E. Motta, “Semantically enhanced Information Retrieval: An ontology-based approach,” Web Semant. Sci. Serv. Agents World Wide Web, vol. 9, no. 4, pp. 434–452, 2011.

[5] A. Gomathi, J. Jayapriya, G. Nishanthi, K. S. Pranav, and P. K. G, “Ontology Based Semantic Information Retrieval Using Particle Swarm Optimization,” Int. J. Appl. Inf. Commun. Eng., vol. 1, no. 4, pp. 5–8, 2015.

[6] D. Zhou, S. Lawless, J. Liu, S. Zhang, and Y. Xu, “Query Expansion for Personalized Cross-Language Information Retrieval,” Int. Work. Semant. Soc. Media Adapt. Pers., 2015.

[7] M. Amina, L. Chiraz, and Y. Slimani, “Short Query Expansion for Microblog Retrieval,” Procedia - Procedia Comput. Sci., vol. 96, pp. 225–234, 2016.

[8] D. Pal, M. Mitra, and S. Bhattacharya, “Exploring Query Categorisation for Query Expansion : A Study,” CoRR, pp. 1–34, 2015.

[9] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query Expansion via Wordnet for Effective Code Search,” IEEE, pp. 545–549, 2015.

[10] M. C. Di. Galiano, M. . M. Valvidia, and L. . U. Lopez, “Query expansion with a medical ontology to improve a multimodal information retrieval system,” Comput. Biol. Med., vol. 39, pp. 396–403, 2009.

[11] J. Choi, Y. Park, and M. Yi, “A Hybrid Method for Retrieving Medical Documents with Query Expansion,” in Big Data and Smart Computing (BigComp), 2016, pp. 411–414.

[12] A. Abbache, F. Meziane, G. Belalem, and F. Z. Belkredim, “Arabic Query Expansion Using WordNet and Association Rules,” Int. J. Intell. Inf. Technol., vol. 12, no. 3, 2016.

[13] J. Ooi and H. Qin, “A Survey of Query Expansion , Query Suggestion and Query Refinement Techniques,” Int. Conf. Softw. Eng. Comput. Syst., pp. 112–117, 2015.

[14] M. Mataoui, F. Sebbak, F. Benhammadi, and K. B. Bey, “Query Expansion in XML Information Retrieval A new Approach for terms selection M’hamed,” in Modeling, Simulation, and Applied Optimization (ICMSAO), 2015, pp. 4–7.

[15] M. Mitra, C. Buckley, and F. Park, “Improving Automatic Query Expansion,” in Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, 1998.

[16] S. Deerwester, S. T. Dumais, and R. Harshman, “Indexing by latent semantic analysis,” J. Am. Soc. Inf. Sci., vol. 41, no. 6, pp. 391–407, 1990.

[17] M. R. A. Nawab, M. Stevenson, and P. Clough, “An IR-based Approach Utilising Query Expansion for Plagiarism Detection in MEDLINE,” J. Comput. Biol. Bioinforma., vol. 5963, no. APRIL 2015, pp. 1–9, 2015.

[18] Q. Jin, J. Zhao, and B. Xu, “Query expansion based on term similarity tree model,” Int. Conf. Nat. Lang. Process. Knowl. Eng., pp. 400–406, 2003.

[19] R. Mandala, T. Tokunaga, and H. Tanaka, “Combining Multiple Evidence from Different Types of Thesaurus for Query Expansion,” Proc. 22Nd Annu. Int. Acm Sigir Conf. Res. Dev. Inf. Retr., pp. 191–197, 1999.

[20] M. Farhoodi, M. Mahmoudi, A. Mohammad, Z. Bidoki, A. Yari, and M. Azadnia, “Query Expansion Using Persian Ontology Derived from Wikipedia,” World Appl. Sci. J., vol. 7, no. 4, pp. 410–417, 2009.

[21] H. Al-chalabi, S. Ray, and K. Shaalan, “Semantic based Query Expansion for Arabic Question Answering Systems,” First Int. Conf. Arab. Comput. Linguist. Semant., pp. 131–136, 2015.

[22] L. Afuan, A. Ashari, and Y. Suyanto, “A study : query expansion methods in information retrieval,” in International Conference On Engineering, Technology and Innovative Researches, 2019, pp. 1–7.

[23] L. Afuan, A. Ashari, and Y. Suyanto, “Query Expansion in Information Retrieval using Frequent Pattern ( FP ) Growth Algorithm for Frequent Itemset Search and Association Rules Mining,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 2, pp. 263–267, 2019.

[24] A. Babu and S. L, “An Information Retrieval System for Malayalam Using Query Expansion Technique,” Int. Conf. Adv. Comput. Commun. Informatics, pp. 1559–1564, 2015.

[25] A. Noroozi and R. Malekzadeh, “Integration of Recursive Structure of Hopfield and Ontologies for Query Expansion,” Int. Symp. Artif. Intell. Signal Process., 2015.

[26] A. Bouziri, C. Latiri, E. Gaussier, and Y. Belhareth, “Learning Query Expansion from Association Rules Between Terms,” 2012.

[27] F. Wang and L. Lin, “Domain Lexicon-based Query Expansion for Patent Retrieval,” Int. Conf. Nat. Comput., pp. 1543–1547, 2016.

[28] A. Boubacar and Z. Niu, “Concept Based Query Expansion,” Int. Conf. Semant. Knowl. Grids, 2013.

[29] N. F. Noy and D. L. Mcguinness, “Ontology Development 101 : A Guide to Creating Your First Ontology,” pp. 1–25, 2000.

Downloads

Published

2021-05-22

How to Cite

Afuan, L., Ashari, A., & Suyanto, Y. (2021). A New Approach in Query Expansion Methods for Improving Information Retrieval. JUITA: Jurnal Informatika, 9(1), 93–103. https://doi.org/10.30595/juita.v9i1.9657

Issue

Section

Articles

Similar Articles

<< < 

You may also start an advanced similarity search for this article.