Use of Wavelets in Electrocardiogram Research: a Literature Review
DOI:
https://doi.org/10.30595/juita.v9i1.10202Keywords:
ECG, Wavelet, dataset, pre-rocesssing, feature extractionAbstract
Currently the introduction and detection of heart abnormalities using electrocardiogram (ECG) is very much. ECG conducted many research approaches in various methods, one of which is wavelet. This article aims to explain the trends of ECG research using wavelet approach in the last ten years. We reviewed journals with the keyword title "ecg wavelet" and published from 2011 to 2020. Articles classified by the most frequently discussed topics include: datasets, case studies, pre-processing, feature extraction and classification/identification methods. The increase in the number of ECG-related articles in recent years is still growing in new ways and methods. This study is very interesting because only a few researchers focus on researching about it. Several approaches from many researchers are used to obtain the best results, both by using machine learning and deep learning. This article will provide further explanation of the most widely used algorithms against ECG research with wavelet approaches. At the end of this article it is also shown that the critical aspect of ECG research can be done in the future is the use of datasets, as well as the extraction of characteristics and classifications by looking at the level of accuracy.References
[1] A. Hernandez-Matamoros, H. Fujita, E. Escamilla-Hernandez, H. Perez-Meana, and M. Nakano-Miyatake, “Recognition of Signals Using Wavelet Basic Atomic Functions”, Biocybernetics and Biomedical Engineering, 2020.
[2] https://lifestyle.kompas.com/read/2020/12/14/101607520/penyakit-jantung-penyebab-kematian-utama-di-dunia?page=all, tgl akses: 26 Januari 2021
[3] http://p2ptm.kemkes.go.id/kegiatan-p2ptm/dki-jakarta/penyakit-tidak-menular-kini-ancam-usia-muda, tgl akses: 08 Februari 2021
[4] J. G. Yang, J. K. Kim, U. G. Kang, and Y. H. Lee, “Coronary Heart Disease Optimization System On Adaptive-Networkbased Fuzzy Inference System and Linear Discriminant Analysis (ANFIS–LDA)”, Pers Ubiquit Comput, hlm. 1-12, 2013.
[5] http://instrumentasi.lecture.ub.ac.id/electrocardiograph/
[6] J. Pan, dan W. J. Tompkins, “A Real-Time QRS Detection Algorithm”, IEEE Transactions On Biomedical Engineering, Vol. BME-32, No. 3, March 1985.
[7] D. Cabello, S. Barro, R. Ruiz, E. L. Zapata, and J. Mira, “Fuzzy Clustering: Application To The Diagnosis Of Ventricular Arrythmias”, IEEE Engineering In Medicine & Biology Society 10th Annual International Conference, CH2566-8/00/0000—0005, 1988.
[8] A. Minchole, F. Jager, and P. Laguna, “Discrimination between Demand and Supply Ischemia Episodes in Holter Recordings”, Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France, August 23-26, 2579-2582, 2007.
[9] T. H. Tan, C. S. Chang, Y. F. Chen, and C. Lee, “Implementation of a Portable Personal EKG Signal Monitoring System”, Proceedings First International Conference ICMB 2008, Hong Kong, China, January 4-5, 2008, 122-128, 2008.
[11] http://www.sidmedical.cn/en/about.asp (10 Maret 2021)
[12] L. Y. Di Marco and L. Chiari, “A wavelet-based ECG delineation algorithm for 32-bit integer online processing”, BioMedical Engineering OnLine, 10:23. doi:10.1186/1475-925X-10-23, 2011.
[13] E. M. Imah and T. Basaruddin, “Klasifikasi Beat Aritmia Pada Sinyal EKG Menggunakan Fuzzy Wavelet Learning Vector Quantization”, Jurnal Ilmu Komputer dan Informasi, Volume 4, Nomor 1, Februari 2011.
[14] B. S. Widodo, “Aplikasi Wavelet Untuk Penghilangan Derau Isyarat Elektrokardiograf”, Jurnal Buana Informatika, Volume 2, Nomor 2, pp.95-101, Juli 2011.
[15] A. Mukherjee and K. K. Ghosh, "An efficient wavelet analysis for ECG signal processing", International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, pp. 411-415, doi: 10.1109/ICIEV.2012.6317419, 2012.
[16] A. Surtono, “Analisis Klasifikasi Sinyal EKG Berbasis Wavelet Dan Jaringan Syaraf Tiruan”, Tesis, Prodi Teknik Elektro, Minat Studi Magister Teknik Instrumentasi, Jurusan Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada Yogyakarta, 2012.
[17] F. Luthfi, and A. Arifin, “Klasifikasi Sinyal Elektrokardiografi Menggunakan Wavelet Transform Dan Neural Network”, The 13th Seminar On Intelligent Technology and Its Applications, Teknik Elektro, ITS Surabaya, ISSN: 2252-8296, 2012.
[18] C. H. Fan, Y. H. Hsu, S. N.Yu, and J. W. Lin, “Detection of Myocardial Ischemia Episode Using Morphological Features”, 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, 3 - 7 July, 7334-7337, 2013.
[19] Q. Zheng, C. Chen, Z. Li, A. Huang, B. Jiao, X. Duan, and L. Xie, “A Novel Multi-Resolution SVM (MR-SVM) Algorithm to Detect ECG Signal Anomaly in WE-CARE Project”, Center for Wireless Communication and Signal Processing, School of Electronic Engineering and Computer Science, Peking University, Beijing, China, 2013.
[20] N. P. Hughes, L. Tarassenko, and S. J. Roberts, “Markov Models for Automated ECG Interval Analysis”, http://www.robots.ox.ac.uk/~parg/pubs/nph_nips03.pdf, 2013.
[21] K. Balasundaram, S. Masse, K. Nair, and K. Umapathy, “Automated Signal Pattern Detection in ECG During Human Ventricular Arrhythmias”, 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, 3 - 7 July, 1029-1032, 2013.
[22] J. Utama, Electrocardiogram (ECG) dengan Noise Reduction Berbasis Wavelet Menggunakan Pemrograman Lab VIEW, Telekontran, Vol. 1, No. 1, Januari 2013.
[23] S. Barmase, S. Das, and S. Mukhopadhyay, “Wavelet Transform-Based Analysis of QRS complex in ECG Signals”, IEEE, Juli 01, 2013.
[24] A. Kaveh, and W. Chung, “Automated classification of coronary atherosclerosis using single lead ECG”, IEEE Conference on Wireless Sensor (ICWISE), pp. 108–13, http://dx.doi.org/10.1109/ICWISE.2013.6728790, 2013.
[25] P. Sarma, S. R. Nirmala, and K. K. Sarma, “ECG Classification using Wavelet Subband Energy based Features”, International Conference on Signal Processing and Integrated Networks (SPIN), pp.785–790, 2014.
[26] K. Daqrouq, A. Alkhateeb, and M. N. Ajour, “Neural network and wavelet average framing percentage energy for atrial fibrillation classification”, Comput. Methods Programs Biomed, pp. 919–926, 2014.
[27] S. Asgari, A. Mehrnia, and M. Moussavi, “Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine”, Computers in Biology and Medicine, Volume 60, May 01, pp.132-142, 2015.
[28] M. Thomas, M. K. Das, and S. Ari, “Automatic ECG arrhythmia classification using dual tree complex wavelet based features”, AEU-Int. J. Electron. Commun, 69 (4), pp.715–721, 2015.
[29] A. Sharmila, P. Mahalakshmi, V. Sharma, G. DEY, and K. Yashwanth, 2015, “Detection of Artial Fibrillation Disorder by ECG Using Discrete Wavelet Transforms”, Asian Journal of Pharmaceutical and Clinical Research, Vol. 8, Issue 6, pp: 4-6, 2015.
[30] H. Aguirre-Ramos, “Wavelet for Correction of ECG Images”, ECORFAN Journal-Democratic Republic of Congo, 1-1, pp:36-41, 2015.
[31] A. Sampath, and T. R. Sumithira, “ECG Morphological Marking Using Discrete Wavelet Transform”, Intelligent Decision Technologies, vol. 10, no. 4, pp. 373-383, 2016.
[32] I. Hamed, M. Owis, “Automatic arrhythmia detection using support vector machine based on discrete wavelet transform”, J Med Imaging Health Inform, http://dx.doi.org/10.1166/jmihi.2016.1611, 2016.
[33] L.O. Shu, M. Adam, and J.H. Tan, “Automated identification of coronary artery disease from short-term 12 lead electrocardiogram signals by using wavelet packet decomposition and common spatial pattern techniques”, J. Mech. Med. Biol., 17(7), 2017.
[34] H. M. Tun, W. K. Moe, and Z. M. Naing, “Analysis on ECG Data Compression Using Wavelet Transform Technique”, International Journal of Psychological and Brain Sciences, Vol. 2, No. 6, pp. 127-140. doi: 10.11648/j.ijpbs.20170206.12, 2017.
[35] M. Aqil, A. Jbari, andA. Bourouhou, “ECG Signal Denoising by Discrete Wavelet Transform”, iJOE, Vol. 13, No. 9, 2017.
[36] S. Sarasawat, G. Srivastava, and S. Shukla, “Wavelet Transform Based Feature Extraction and Classification of Atrial Fibrillation Arrhythmia”, Biomedical & Pharmacology Journal, Vol. 10(4), pp:1715-1725, 2017.
[37] U. R. Acharya, H. Fujita, S. L. Oh, U. Raghavendra, J. H. Tan, and M. Adam, “Automated identification of shockable and nonshockable life-threatening ventricular arrhythmias using convolutional neural network”, Future Generation Computing System, http://dx.doi.org/10.1016/j.future.2017.08.039, 2018.
[38] D. D. Patil and R. P. Singh, “ECG Classification Using Wavelet Transform and Wavelet Network Classifier”, Advances in Intelligent Systems and Computing, Vol. 668. Springer, Singapore. https://doi.org/10.1007/978-981-10-7868-2_29, 2018
[39] A. R. Gómez and Á. Jiménez-Casas, “Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform”, American Journal of Engineering Research (AJER), e-ISSN: 2320-0847 p-ISSN : 2320-0936, Volume-7, Issue-5, pp-51-59, 2018.
[40] R. He, K. Wang, N. Zhao, Y. Liu, Y. Yuan, Q. Li and H. Zhang, “Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks”, Front. Physiol., 9:1206, doi:10.3389/fphys.2018.01206, 2018.
[41] B. R. Oliveira, M. A. Q. Duarte, C. C. E. Abreu, and J. V. Filho, “A wavelet-based method for power-line interference removal in ECG signals”, Res Biomed Eng., 34(1):73-86. DOI: 10.1590/2446-4740.01817, 2018.
[42] Y. V. Saragih, A. W. Widodo, and M. A. Rahman, “Pemilihan Fitur Berbasis Wavelet untuk Klasifikasi Denyut Jantung dari Rekaman Elektrokardiogram”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol.3, No.4, April, pp:3140-3147, 2019.
[43] M. Arumugam and A. K. Sangaiah, Arrhythmia identification and classification using wavelet centered methodology in ECG signals, Concurrency and Computation (Practice and Experience), November 07, 2019.
[44] Z. Wang, J. Zhu, T. Yan and L. Yang, “A new modified wavelet-based ECG denoising, Computer Assisted Surgery”, 24:sup1, pp: 174-183, DOI: 10.1080/24699322.2018.1560088, 2019.
[45] A. K. Sangaiah, S. Wang, D. Zhang, F. Li, J. Wang, V. S. Sheng and X. Ding, “An ECG Signal De-Noising Approach Based on Wavelet Energy and Sub-Band Smoothing Filter”, applied sciences, November 18, 2019.
[46] J. Wang, P. Wang, and S. Wang, “Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process”, Biomedical Signal Processing and Control, 2020.
[47] C. C. Chen and F. R. Tsui, “Comparing Different Wavelet Transforms on Removing Electrocardiogram Baseline Wanders and Special Trends”, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA and Department of Biomedical Engineering, National Cheng-Kung University, Tainan, Taiwan, 2020
[48] Y. Zaho, J. Cheng, P. Zhang, and X. Peng, “ECG Classification Using Deep CNN Improved by Wavelet Transform, Computers”, Materials & Continua CMC, vol.64, no.3, pp.1615-1628, 2020.
[49] J. Han dan M. Kamber, “Data mining Concept and Techniques”, San Fransisco: Morgan Kaufman Publisher, 2006.
[50] M. Bramer, “Principles of Data Mining”, Springer-Verlag London, 2007.
Downloads
Published
How to Cite
Issue
Section
License

JUITA: Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.